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SOME RESULTS ON «.-METRIC SPACES
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3. M. POTSCHER
Instifut fiir Hithere Studien, Wien

f Received June 20, 1978 )

1. kntrodaction

It is a4 well-known fact that {be nietrizable spaces are exactly those,
which admit a uniformity with a countable base or, equivalently, one with
a linearly ordered base of countable cofinality. Therefore — and alse be-
cause of other reasons — it is just natural to investigate spaces having uni-
formities with linearly ordered bases of arbitrary cofinality. It appears
that these spaces are exactly those, which can be ‘“‘metrized” by a distance-
function 4 on X with values in a totally ordered abelian group G, which has
cofinality m,=m,. Usually such spaces (X, ) are called w,-metric spaces.
Good work has been done in {his field, e.g. by F. Hausporer, F. STEVEN-
sON, W. THrow, A. Haves, P. Nvikos, 1. Junaasz, A. K. STEIXER, E. F.
STEINER, H. €. REICHEL and many others. See aiso the bibliographies.
This paper deals with products of such spaces and investigates completeness
and compactness properties of them. Let us now collect several prerequisites.

A totally ordered abelian group is an abelian group (¢, +) with an
order = such that a=b implies a+¢=b+c for all a, b, c€G. The cofinality
cof (G) of such a group G is the smallest ordinat o, such that there is w,-
sequence (X,)y«., in & with x40 and which is converging to 0 in the

"

order topology. Because of the definition cof (G) = o, has to he a regular
ordinal. For notations concerning ordinals and cardinals see the book of
Junaisz [3]. Alt spaces are at least 7,. Let X be a set, G a totally ordered
abelian group with cofinality w,., then we call a function 4 from X* to G an
ey~-metric on X iff it satisfies the usual axioms tor a metric. (X, d} is then
called an ,~metric space. If additionally (i) holds, we cali & a non-
archimedean w, -metric: (i} 4(x, ¥)=max (d{x, 2), d(z,¥)) for all x, y, z€ X.
Clearly every w,metric space carries both a topology and a uniformity in
a natural way. A hase for this uniformity f, is for example the set {{/, 1e=>
=0, e€ G} with entourages U, = {(x, v)€ X?:d(x, ¥)<e}. A base for the topo-
logy 7, is {B(x, £): x€ X, £€G, £=0} with B(x, &) = {y € X : d{x, y)<¢}. Clearly
7,4 coincides with the topology 4, induced by @,. If we now order the entou-
rages by U=V iff U2V, we learn that @{, has a linearly ordered base of



4 POTSCHER, B. M.

cofinality e,.! Stevenson and Thron have shown the following: every w,-met-
ric space (X, d) carries a uniformity %, with a linearly ordered {even more:
well ordered) base of cofinality w,.* If conversely (X, ¢/} is a uniform space
with a linearly ordered base, which has cofinality o, (therr X has even an
equivalent base of the same cofinality, which is well ordered), then a group
G with ¢of (0) = o, and an w,-metric d: X?~G exist such that & =@,
From this theorem and the footnote 2 it follows that a space can only be
w,-metrizable for one w,, except if it is discrete.

ProeosiTion 1.1.: Let (X, @) be a uniform space with a linearly ordered
base of cofinality w,= e, Then for every group G with cof (G) = o, there
is a non-archimedean w.~metric d from X* to G with @/, = . (As it is seen
from the proof below, d(X?) is not the whole of ¢ but only the set
{s.: e <w,} defined below. Compare [15]).

Proor: Take a well ordered base for @/, say {V,: ez <)% For all o =w,
there is a sequence §, <, such that V; oV V, forn=mand Vs oV <

V., forall 3,. Put W) = n V. Then we have W, o W/ CW,/CV,. Now de-

n—1
fine W, by transfinite induction: W, =W, and if W, is defined for y<«,
notice that N W, is an entourage again since « <w,, ¢=0. Therefore there

is some Wy MW, and we put W, =W, -{W.:2<w,} is a linearly ordered

base with the property that W; o W,CW, whenever e =#. Now take a mono-
tonically decreasing o,.-sequence (5.)..., in G, which converges to zero.
Define d(x, y} = s, iff (x, )eW; for f<a and (x, ¥)$W,, if such an « exists;
if not let d(x, y) = 0. Then d is a non-archimedean (n.a.) w,-metric gener-
ating (.

There is no analogue of this proposition for u = 0, of course. Since every
uniform space with a countable base is metrizable, ¢learly every amy-metriz-
able space is metrizable and vice versa. But not every metrizable space is
we-metrizable over every group of countable cofinality as the following
example shows:

ExamrLE 1.0.: Take X as the set of real numbers R, equipped with the
standard topology. Then X is metrizable but not e,-metrizable over the
additive group @ of rationals, because a metric d: R°—~Q would induce a
continuous non-constant function f(x) = d(x, 0) from R to Q.

For an interesting investigation in this field for groups with count-
able cofinality see [1]. Now we give an important example of an w,~metric
space:

U If we consider the uniformity as a Tukey-uniformity, the linearly ordered base con-
sists of uniform covers -7 and the order is given by the relation .4 refines 7.

* This pari of the statement is only correct if X is not discrete, If X is discrete, its
uniformity @/, has linearly ordered bases with arbitrary cofinality less than | X|. If X is
not discrete, all compatible uniformities having lincarly ordered bases have such with
the same cofinality.

3 Take symmetric V.'s.
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ExampLE [.1.: If A is an arbitrary set we denote by A™ = {(xX,): x,€ A,
a<m,} i.e. the set of all w,-sequences in A. The “natural” topology » on
A“# has as a base the following sets: x(8) = {y€ A®:1x, =y, for all a<p}
whereby x = (x,)¢A™ and S-=wm,. The corresponding uniformity on A™*
has as a linearly ordered base the set B = {{(x.), ()} X =y, for a<pf):
3 -=w,). From Proposition 1.[. it follows that there is a n.a. &, metric on
A"#. Clearly, it can be chosen such that the balls B(x, s,) = x(). (cf. [14]).
The importance of A™# lies in the fact, that every «,-metrizable space with
10 is embeddable in a suitable A”# (cf. [9]).

Every o,-inetrizable space is paracompact (cf. [3]). In the case p=0
there can be proved much more: let @ be an uniferm cover of X. Then
there exists another uniform cover (7, which starrefines @, and so on.

@ = ) (¥, is then again an uniform cover since u>0. But { starrefines
fi=1
itself, and therefore must be a partition of X. From that it is easily seen that
every my-metrizable space (;=0) has a well ordered base consisting of par-
titions of X (well ordered with respect to starrefining) for its uniformity.
A space is called w,-additive iff the infersection of fewer than w, open sets
is open again. Clearly every m,-uetrizable space is w,-additive. A space is
called m,~compact iff every open cover has a subcover with fewer than w,
elements.
A first example of a group with cofinality e, can be obtained by taking
the product of the additive group of integers Z, ie. G = [ Z, where
i‘f—l')‘u
Z; = 7, with co-ordinatewise addition and the lexicographic order. As a
second example take £, the set of ail ordinals smaller than w, with the
so-called ‘“‘natural sum” and “natural product” in the sense of HESSEN-
BERG [4]. With W, denote the smallest field which contains . Then W, is
an ordered field with cofinality o,. An m.-sequence converging to O is for

exarmple [L a«:wﬁ,}. For p =0 it is the field of rationals (cf [12], [13]).

4
|w| stands for max (W, —w), weW,. o(X) denotes the family of open sets in
a topological space, o¢ (X) the family of all . ¢-sets, i.e. all intersections
of less or equal than w: many open sets.

2. Products

It is a well-known result that a product of topological spaces is metriz-
able iff each factor is so and only countable many factor spaces consist of
more than one efement. Further the product is completely metrizable iff each
factor is so. For w,metrizable spaces the situation is quite different, since
the Tychonoff-producttopology is not w,-additive in general. P. Nyixos
[8] has proved that a box-product of fewer than w, w,metrizable spaces is
itself w,~metrizable. With a modified notion of a producttopology due to
I. I. PARAWITSCHENKO (see [6]) we can get further results.
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DEFINITION: Let X; he topological spaces for every i=m,, and X =
= Jf X, the set-theoretical product. If e, is an arbitcary initial ordinal,
e

a base for the m,-producttopoiogy on X is the following:

B=]Jf U:Uea(X), U; =X, only for fewer than w, indices| .
b, f

For m, = m, we obtain the Tychonoff -producttopology, for o, =, the box-
topology. L. Junasz proved — assuming CH - that the o.-producttopology
of e, e ~metrizable spaces is o, -metrizable (cf. [6]); M. M. CosAX observed
that the assumption of CH can be deleted [2]. The results of Nvixos and
Junasz can be reformulated as follows: the m,-producttopology of less or
equal o, many m,.-metrizable spaces is itself m,-metrizable. The following
theoremt now asserts that except one case concerning discrete spaces the
previous statement represents the only case in which such a product of
m-nietrizable spaces can be o -metrizable.

THEOREM 2.1.1 Let X, be non-discrele fopological spaces for cvery i< A
(A is an arbifrary cardumi} and Z; be discrele (ergo w,~melrizable ) spaces
withcard Z;>1 forall j<B. Let Y = [] X; X ]] Z; be the set-theoretic prod-

f=A

et equipped With an o,-producttopology. T.-'mn Y is w,~metrizable iff euch
Juctor is so and one of the following conditions holds:

L. e = e, andl A = en,, and B = oy,
2 =y and A = o, and B < o,
3. g = my, and A < . and B -z o,

Proor: For sufficiency let ¥ be o,.-metrizable. Then X, is a subspace
of ¥ and hence o,-metrizable. Further we show:

Case 1. Let m, = mu If A>w,, take ¥ = ((x9), (W)€ V and by o,
mefrizability of Y let {U, tz-=m,y be a neighbourhood base at y. Without
loss of generality U, = J] Uix Jf VJ and by definition the cardinality of

I=A j<B
D= {0 UL X} is less than ., fm' all z-ze., Iherefore| ) i-<m,. Since
IZ':(A.II“
A=wm,, thereisanindex £ i) I, and k-- A, Take now an open neighbour-

wSe

hood W, of x* for which W, = X,. W = ]] XX W, x ][ Z; ts an open neighbous-

i=
hood of v, but U, EW for all z < eo,. lexu]uently A=wm, A similar argu-
ment ahoub B=m..

Case 3. Now let i, <m,,. Supposing A = wm, take U'S X, for i < A. Define
the open set U, = JIUix ff X.x [] Z; for all a<aw,. On the one hand

fox a=i-=A

the set U = N U, is now open by (u_ dddltl\-’lty On the other hand

D
(R

U= N U, = u Uiy, HXXHZ

[{A

RIS e
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and therefore is not open in the m,-producttopology. Conscquently A<,
A similar argument apptlies to show B =<,

Case 2. At the end we have the case o, -z, First supposing A=a,

we consider the subspace ¥ = Jf X, This subspace of Y carries the box-
i-{l’yn

topology since . =m,, and is clearly o.-metrizable. Now let v = (x))c Y’
be 4 point, such that x'€ X, is not isolated for all { <o, (recall every X, is not
discrete), Now again choose a linearly ordered neighbourhoodbase of the form
| Jf Ui z<m,,|. Clearly {{i: % -z} is a neighbourhoodbase at xf and since
[F<ern

xtis not isolated there is some open neighbourhood V; . N U of x¥in X, for

a=i

every i-=wm.. V = [[ Vi is a neighbourhood of y in ¥ and consequently

f=m,,
. i ; . . . f . .
therc is an ff Uz V¥, which implies U<V, for all i; choose an i= 3, then
f<wm,

we have UiCV, |“\ U« L’ for this {, which is a contradiction. 50 A=w,

must hold. Suppose now 3=, still holds. Then we consider the subspace

Z = [l Z; The subspace topology coincides with the w,-producttopology
_,I-—(:

and again Z is o,-metrizable. 1f cof {m,)<m,, take for every g=cof (w.)}
a4 i=m, such that sup i = . Let {U,ra<em,} be a linearly ordered

neighbourbood base f01 z€Z, of the form U, =[] U;. Now for ait y, there

cxist =; such that U;rj - Z; for at least yy many indices {. Now put U =

= 7 U,.Uis by e,-additivity open in Z. On the other hand U con-
Jiwrond ", "

sists of at least o, (== sup ) factors =2, and therefore cannot be open in

the m.-producttopology. So we must have cof (tma)y=wm,. Denote now with

&, the set of indices { such that Ul .= Z.. Then card 8, = m,. Since U, Uy if

==, we have 6,26, Choose .f‘ié_ for every =--a, with the additional

property i,>i. if 2>z, Clearly {1* = Z; . Put now

V= I <l {2‘=‘
jt‘l{fa:x-:ruﬂ}, Fen,
PRI
where z = (z). Then V is opent and contains z = (2f). But no U, is a subhset

of ¥ since U;“ = Zi, and card Zi_=1. Therefore B <w,.

To show necessity one only has to use the just mentioned theorems
of Nvikos and JuHAsz.

Now as a corollary we can describe the space A~ as a product of dis-
crete spaces.

CoroiLLary: For regular o, (474 ¥) is homeamon phic to the product
I A; with the m,.-producttopology, where A; = A for every { with the
I'fnﬂ
discrete topology. For singular m, the topology » is weaker than the w,-
producttopology.
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Thercfore for u=0 every m. -metrizable space is embeddable in an
a-product of discrete spaces.

For products of spaces metrizable over groups with different cofinality,
the situation looks quite different. If X is w ~metrizable and Y e,-metrizable
{0~ o), then XX Y is not ey-metrizable for any o,, except X or V is
discrete. J. E. Vaugnx has given an example of a procluct of a metric space
with an ra,-metric one, which is not even norinal, see [16]. Searching for
conditions eusuring paracompactness we abtain the following:

THEorEM 2.2.: Lef X and 'V be paracompact spaces and Y m-compact.
If X has chardcferistic = o, Hienn X XY s paracompact.

Proor: Take an open cover (@0 of X X Y. Without loss of generality we
may assuite that 70 consists of sets of the form UXV with U< X, VOV,
Since Y is we-compact, there is a subcover {¥xV¥ix=<3} of (XIxY,
A=y, for every x€ X. Because of char (X) = w, =g, there is an open neigh-
hourhood U(X)C X satisfying Ux)SUY for all =3, (for all x¢X). The
open cover 7 = {U(x) : x¢ X} of X is now refined by an open, Jocally finite
cover 247, For every U’ €@’ choose U(x)ed{ such that U'c U(x) and denote
this x bv x = f{U’). Also for all x¢X there is an open, locaily finite cover
TU< of ¥V orefining {(VX:2=g,). Define now the family ¢ = U {U'xXW:

W eT0* with x = f(U")}. Clearly «{ is an open cover of X X ¥V and refines @),
We claim « £ to be locally finite. Take air {x, ¥} X X V, then we can find an
open nuqhbourlmod 0 of x, such that only finite many clements U ed{’” meet
0. The point (x, y) is ther efore contained at most in the sets of the form Ui

X W with We oY, But for every index { there is a neighbourhood V; ofy
in ¥ whicl meets ontly finite many members W ¢ #/(Va, Let V - s NV Then
V is an open set containing v and meecting only finite many elemmtb of
08 for every i Conqequcnt]y OxV is an open neighbourheod of (x, ¥),
which is intersected only by finite many elements U; X W with W ¢ /AU,
Therefore ¢ is locally finite.

CororLary: If X is m,metrizable and Y is m,-metrizable and .-
compact, then X X V is paracompact if w, = .

ReEmark: If we demand char (X} = e, we can weaken em-compact
to { e, o J-compact. See Vaucun [ 16].

3. o, ~complete spaces

We now turn to products and subspaces of m,~complete spaces. Lavren-
tieff’s theorem will be generalized and a characterization of m ,-completely
w,-metrizable spaces will be given. An w,-metric space (X, d) is called o,
complete if every Cauchy- o ~scquence converges (a Cduchy- ~sequence is
an m,-sequence (x,), .., such that for every ac@, a=0 there is j<w, and
a, o' =7 inplies d(x,, x¢)<a). STEVENsON and THRoN proved that an -
metric space (X, d) is w,~complete iff (X, @) is complete in the uniform
serlse.
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H. C. REICHEL has shown in [10] that A" is w,-complete by showing
that (A", @) is complete, where @{, is the natural uniformity associated
with the natural topology ». He also has shown that an w,.-nictric space is
w,~complete iff it is isomorphic with a closed subspace of A®r

THEOREM 3.1.: Lét X, be w,~inctrizable spaces and let [[ X, carry such

i=A
an w-productfopology that it is er~melrizable (cf. Th. 2.1.). Then every X, is
w ~completely w -metrizable iff [ X, is so.

i<A

Proor: Since every X; is a closed subsef of the product, the reverse
implication is easy. To prove the other one we observe that by Theorem 2.1.
it suffices to investigate only the case where A=, and the product carries
the m,-producttopology. Then every X, ras a compatible, complete uniform-
ity {; with a linearly ordered base. Define now in an cbvious way the o,
productuniformity @f. @{ is compatible with the o, -producttopology and has
a linearly ordered base. To show completeness, take a Cauchy-net (X.).<n,
relative to @/ (it suffices to consider only nets with index-set w,, since @
can be gencrated by an w,-metric). Then the prejection of (x,) on X, i.e.
(x1) is a Cauchy-net relative to @/, and therefore converges to x'. Now (x,)
converges to x = {xf).

REmarK: Here we have used the fact that co-ordinatewise convergence
of an w,~sequence implies the convergence in the o -producttopology since
all spaces are w,~metrizable.

1 the following we investigate the properties of subspaces of w,-com-
plete spaces. Similar to the metric case (i.e. g = 0) G, ,~subsets are exactly
the w-compictely m,-metrizable ones. To prove this we need somie lemmata
and definitions.

DeriNtTion 3.1.: Let (V, d) be an w.metric space with 4:V2--G,
where d(Y?) = {5,:a=<w,} and s, converging monotonically to 0 in G (if
w = 0, we drop the condition for d(Y?)). For a function f from a set AcX
into vy and for UJC X we define osc (f, U) = sup {d(f(x), S@)) :x, yeUN A}
ifUNA=D, andosc(f, Ny =5, if UNA=0.If Xisa topoloclcal space and
x€A, then osc (f, X) = inf osc (f, U) where the infimum is taken over ail
neighbourhoods U of x.

Remark: The sup (iuf) in the definition is to be understood as
supremum {infimum) in the set {s.:x=w,} and not in G. Then it always
exists, since the s, are well ordered in the reverse order of the group G. For
the case 4 = 0 we avoid such problems by taking ¢ = R.

Lemma 3.2.: Let X be w.-metrizable, ¥V a,~completely w, -tnetrizable.
Let A be an arbitrary subset of X and f: AV a continuous function.
Then there exists a continuous extension f* of f over a G,, ,~set A*CX,

where ACA*C A,

Proor: By Proposition 1.1. find an w,-metric d, which has all properties
mentioned in Definition 3.1. Now mimic the proof of the case ¢ = 0, e.g. in
[17], p. 177.
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Lemya 3.3.: Let X and ¥ he w,~conpletely o ~metrizable spaces. Let
fir ACX BV he a homeomorphism. Then there are two G, -sets AFCX
and B* ¥V with A A%< A and B< 8% 13 such that I can he extended to
i homeomorphism 7% from A® to BF.

(For u = O we get the theorem of Lavrentieff.)

Proor: Similar to the proof of Theorem 24.9. in [ 17].

TucoreM 3.4.: Let G be a subset of ant o -metric space (X, d). If X is
en~eomiplete wid (G ois a G. -sef in X, then (G 1s o -completely o ~nefrizable.
Conversely, if G is w~complelely o -metrizable it is « Gy ~Sel it X

Proor: For « = 0 see [17]. Therefore v =0. First let &2 be open in X.

Because of Proposition LI, we may assume that the m,~metric ¢ on X has
. . i . .

as range 1, and additionally (X% = { Do m,,}C_ W.. For A< X we define:

d{x. Ay = max=——-:-—-«<d(,\‘._1’) for all y< AL 0f this set is not void and
A x

“
in the reverse order of the field W.. Now define a continnous function f from

1 ; ) . ) .
7 to W, by f(x) = L Then o ¥(x, v) = d{x, 1+ 1 f00— vy Is an
VIO (6, )+ ) = 1)
ev-metric on (7 compatible with d, relative to which (7 is o,-complete. To

. . . - [ .
dix. )y = 0 otherwise. The maxinmum exists, since { — 1z =em,}is well ordered

. . . Lo
show thix, take a Cauchy-m -sequence {x,) relative fo d,* i for all - -2l
x

. , [ .
there exists o =, such that far 3, v-~2"  fix)—f{x,), = —. With other

words *

1 1 ]

e o e — L —————— =

W X — () d(x.. X—G) 2

. !
Therefore d{x,, X —G) = ~ - must be bounded away from zero, nther-
x

. o . , L .
wise |a;- o] =— for fixed - ~a" and aff 7", which is impossible, Hence
x
{x, iz -m S M, = e X d(x, X—G)z=¢}. M, is closed and since d = &%, (x.)
is also Cauchy retative to d. Therefore (x,}~x< M., and G is w,~complete. If
G is now a G, ~set, Le. G = 1 H,, H, open, then G is homeomorphic fo
ihe diagonal in the product [f H, when the product carries the er,-product-
'I‘l-.!'l;‘

topology. Now the diagonal is closed in the product and cach H, is ¢.~com-
pletely o —metrizable as just shown.
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To prove the converse proceed as in [17] p. 179 £, using Leimma 3.3.
We have now proved the following characterization of w,-completely o~
metrizable spaces:

CoroiLary 3.5.: Let X bhe an om,-metric space. The following are
equivalent:

(a) X i3 wcompletely w,-metrizable
{b) X is Gy, in an emy-completion X

(c) X is G, « in every wmetrizable space, in which X can
he embedded.

It is well-known that in the case « = 0 the following is also cquivalent to
(a), (b), (c}:
() XisG,inpg X
(c’) X is G, in every Tychonoff space in which
X is embeddable as a dense subspace.

In the next theorem we will show that analogous statemenis as (d")} and
("} hold also for g =0

THEOREM 3.6.: Let X be an w-merizablc space. Then the folfowing
staternents are equivalend o every one of (a), (b), (¢):

() XisG, .in g X
(¢) X is G, in every Tychonoff space in which X is densely
embedduble

(1) X is G, int one K, where K s an arbitrary compacl-
ification of X.

For p=0 additionally
(2) X is G, . nasnitable A™*.

Proor: (a)-+(d): If 4 = 0 we have finished by Corollary 3.3. Therefore
assume u=0. Thus X has a complete uniformity 7 with a linearly ordered
hase, say {V.:z-=<a,}, of entourages. Let D be a set of pseudometrics, which
generate the same uniformity. Now choose a subset of D in the follow-
ing way: take p,€D arbitrarily. If o, is choosen for <y =, take g, €D
such that

Uf”g i U??r:nvw

=1

where U, = {(x, ¥):o(x, y)<&}. Then clearly U3, cU¥, for >3 and also
for o = g if n=m. The set {o,: x~,} also generates the uniformity. From
the pseudomefric space (X, n,) we can obtain the metric identification
(X%, o). The projection from X to X¥* is denoted by &, i.c. h, () = h, (v) iff
0, (X, ¥} = 0. Now consider the following diagram:
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(X, L (X, $u) e (X5 S Cﬁ{‘{)}(\;:é’\;}

i ;“

S - S *

X —— o e e e e e = f3X,,
Fig. 1

()A(*, 0¥} is the metric completion of (XZ, o¥) and ¢, the corresponding em-
bedding. i resp. i, are the embeddings of X resp. X* in their Stone-Cech-
compactifications. F, is the extension of i, o ¢, e fi; 0 :dt fromn X to gX.
Since )A(j‘ is complete, i, ()?f) is a (i-set in ,-?)?f. Consequently A,:=
= F, U(i, (X*)} is again a G.-set in BX. As it is easily seen i(X) N A, and
this intersection is a (7, ,-set in AX. We will show that the reverse i!nclusion
alse holds. Suppose it would not, then there would be at feast oite pe N A,

T=e £t

with p1i(X). But this means that for all z-=wm, F(mel, ()‘{f) and conse-
quently there is exactly onc v, ¢ XF with F (p) — i.{»), becansge i, is in-
jective. For the further preof we need the following two diagrams for f=a:

> \

P, = {ha
* fask ¥ ¥
(X ) Qo) == =55~ = (Xg, §p)
€x 9(3
A A
(X5 800) === (X700
Fig. 2.

Herein J, is defined as followyfﬁ,(\:*)' = Ji(x), where x* ¢ XF and xe iz 1(x*).
As it is easily checked f, is well defined and uniformly continuous. There-

fore the extension of fﬁ on X* exists and is denoted by g.,. The third dia-
gram Jooks like:
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P

A A
X B2 X7 -
i ':ﬂ i
3 f, A g £
o Il O
\i’/
Fig. 3.

Here G, :— ¢, 0 i, 0 idy and fi is the extension of gp, to the Stone-Cech-
compactification. The subdiagram consisting of G,, Gy, g, commutes be-
cause the second diagram does. The subdiagram F, F, fi commutes since
these functions are extensions of G,, Gs, g:. Now we return to show that
N A,€i(X) holds. We have just mentioned that otherwise we would have
ﬂ{ﬂiﬂ -
a point p¢i(X) and F.(p) = ix(y.) for exactly one v, X¥ and for all e <o,
Then we have £(y:) = Fp) = fou (Fs(P)) = Jau (i (¥p)) = ix (g (yp) for all
f=a and therefore v, = gs.(¥s). For every f<aw, choose xz¢ X such that

- ] N . . . N
o (G (x3), yﬁ){--é--, which is possible since Gg(X) is dense in XF. We show

that (xs)i<., is a Cauchy-w, net in (X, @). Take = <aw,, then it suffices to
show that p,. (xy, x3) <1 for finally many 8, 5. To show this take 8, " >o.

- | ~ .
Then we have oF (G (xs), ¥a) =3 and p¥ (Gp (x¢), ¥&) {%. Since ps(x, ¥)~=!

irplies g, (x, 3) = 0 for 8= by construclion of the ¢’s, we get for £, 3’ =«

() oF (gm (Gr (x2)), g5 (.Vﬂ)) =0

and the same for 5” instead of 5. By the fact that gz (¥5) == 1o = g (vs) we
get 0¥ (G, (xs), G.(xp)) = 0. But fthis means g, (s X} =0 and therefore
(xs) is a Cauchy-net in (X, @). Now it must converge to some point, say
xeX. Then clearly o,(xsx)=0 for g=x and consequently 0¥ (G. (%),
G,(x)) =0; now using (%) we obtain g* (G, (x), y,) =0, which means
G, (x) = y,. This implies i {G.(x)) = i, (1,}.= F.(p). Since i,0G,= Foi
we get £, (i(x)) = F.(p) for all x=w, and for this fixed x€ X. But this is
impossible: take U and V as disjoint neighbourhoods of i{x) and p in 8X,

Then there is an a <o, such that B (x, &,) 1= {ve X: p.(x, V) <e i~ L (L),
Therefore i, (Ga (B*(x, a,l))) is a subspace-neighbourhood of i, (G.(x)) =
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- F, (i(x)) in i(X¥)cpX*. For all open V'V and pe ¥’ there is an i(2)e V'’
since i(X) is dense in 3X. This i(z) has the property that F, (i(z)) is no ele-
ment of 7 {G. (B (x, s,))), because F, (i(2)) = . (G.(2)) and o.x, 2) =&,
which implies i, (G, ()<L ((}, (B (x, e,))). But this means that £, would
not be continuous. This is a contradiction and hence M A, = {X).

(f) —~(d): Let X be a G, ~sct in one compactification K and f the cor-
responding embedding. Denote with f* the extension of f to 3X. Then
XS L(f(X)) and f*1(f(X)) is clearly a G,, ,~-set in 8X, since f(X) is so0
in K. The inclusion f*~1 (f(X))C X is proved by showing that no pe X —-X
has f*(Mcf(X). But this follows from fH(3X — XY K —f*(X) (cf. [17],
p. 138,

The implications {d)—{e), (e)-(c), (c)—+({f) and for p=0 {(c)--(g),
(¢)-~(a) are easy modifications of the proofs for g = 0 or are obvious.

4, m ~compact spaces

It is a well-known fact that every compact space has exactly one com-
patible uniformity, but the converse is false. Therefore it is just natural to
usk what spaces look like which have oanly one uniformity, which has a
linearly ordered base. An answer is given in )], where it is shown that
a topological space is a compact metric one iff it admits exactly one uni-
formity, and this uniformity has a linearly ordered base. The next step is
to investigate the structure of spaces possibly having more than one uni-
formity but having only one which has a linearly ordered base. Recall that
if a topological space has compatible uniformities with linearly ordered
bases, then all these bases (even these from different uniformities) have the
same cofinality except the case that X is discrete {(cf. p. 2).

Tucorem 4.1.0 An wecompaet Ti-spuce has at most e compafible
uniformifv with o linearly ordercd buse of cofinality o, Comversely, ¢ T.-
space which udmits anly ene uniformify <6 with a tinearly ordered buse of co-
finality o, (but possibly other compatible uniformities ), is eo ~compuact.

Proor: For the first part sce [[0]. Now we prove the converse. First
we consider the case y=0. With 7 we denote a linearly ordered base for 7/
with @ =B, x~wm,} and B, <8, for =g, The symbol < stands for
“refining”. Furthermore 9, can be taken as a partition of X for every
2~ w, For later use we renuuk that the cofinality of 3 is clearly o), and
that we can assign in a unigue way an o-sequence of sets B, (x)< 5, to every
xeX, where {B, (x): 2 <} is a neighbourhood base at x.

Case 7: X is not discrete.

X’ denotes the set of accwmulation points of X and B, = {x¢X: x is iso-
lated and {x}578,} for %=, Clearly X = X" ) B ufx: {x}¢3B,). There

are now two further cases to distinguish between:
(A) [X—(BU X')E <, Torall =x-zw,.
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Suppose now X’ were not m,-compact. Then there is an m,-sequence
(Zz)zwn, © X7 with no accumulation point. Therefore we can find pairwise
disjoint neighbourhoods U(z.) in X. Choose 37, =, such that B, (z.)SU(z.)
and B. (z.). Bi(z). ) B. (z) is closed: take Xz 1) B, (2) and x;—~x.

EX LI e,

Then either {x;:;i=m.} L, B. (z.) for same d<=m,, or €8, (2,1) with

Va; COtinal in e, In the fnat case U B, (z,) is closed and t]nrefme xliesin

Uy

it. In the second casc we have d{x;, z,,)—~0 in a compatible w,~metric d and
this would yield z,,--x, which contradicts the choice of (z,). Define now

i = {B:.J(zz) L=<, IX U oB. (z Ly
!

1
2y

which is an open partition of X. Define B, =B, A 70:

(1) {Bl:owwy) is a linearly ordered base for a uniformity @20 since
all 13, are partitions of X and B, <8} if a=3. Clearly /{" induces
the samie topology as @4 does.

(b) The cofinality of this base is ,. since X is not discrete by assump-
tiomn.

(c) =l Otherwise we would have 4 r=ew, such that B, <%
But then B, (z)< B, _(z) which contradicis the construction of y,.

We have now proved that X7 is e -compact, Assuming now that X is
not m,-compact there exists an o-sequence (X, )., without accumulation
point. Since X7 is o ~compact, there cannot he a cofinal subnet of (x.) which
lies in X', Hence we may assume (1,)}C X — X', But (x,) cannot be a subset
of afixed X — (R UX"), since [ X— (R UX")] =, would imply tiat (x,) were
at last constant and had thercfore an accumulation point. Consequently we
have for all =-=w, a g,-2m, with x; €F,. Now we define

0" = {{x:}: oc{f-}«}UiX Y {\'ﬁ;}}-

Then this is an open partition of X. Again we put 87 = 28, 4, //" and get:

(a) {7 ir=e.u} is a lincarly ordered base for a compatible uniformity
.

(b} TFhe cofinality of this base is w,.

(c) @l =", Otherwise we would have a 7 -=e, such that B, <87, i.e.
B.(x;,)S{xs ) which implies {x;}€2B, and therefore x; 4 £, which
is a contradiction.

Therefore X is w.-compact.
(B) | X — {21 ) XY =, forone =-:em,.

Then X —(£.1J X"} is a clopen subset of X, Take two disjoint subsets E resp.
Fot X—(AUX) with card £ = card F = o,.. We write £ = {x,it<w,}
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and F ={v,i1<m,). We define @ = (B, A {X--EWIE} and B) =
= (B A{X=FHRU{F}y and BE = oA ({0} 7 =a I {X —{x: 8=1})). BF is
defined in the same way as BE only with @} instead of #; and y. instead of
Xg. Clearly {BE: v = m,} resp. {BF 1 7<)} gencrate two different uniformities,
cach with a linearly ordered base of cofinality e, Both uniformities induce
the given topology on X, hut this is a contradiction, therefore case 1 (B) is
impossible.

Cuse 2: X 18 discrete.

If card X =m, then X is w,-compact. The case card X =, is treated in
the same way as 1 (B).

[t only remains to consider the case p¢ — 0. If suffices to show that X is
complete in every metric which is compatible with the given topology.!
Suppose there is a metric  on X, which is not coplete. Then we have a
d-Cauchy-sequence (x,) in X without limit. Define a(x,, x,)= {#n—m|.
This is u metric on {x,: #€ N} and can be extended to a metric on X, which is
equivalent to & (cf. [17], p. 165). But clearly 74,==¢{, and both are uni-
formities with a linearly ordered base of cofinality e,. This is a contradic-
tion, and hence X is compact. As a by-product we got a characterization
of compact metric spaces:

CoroLLAaryY 4.0.1.: A topological space is a compact metric one iff
it has anly one compatible {separated) uniformity with a linearly ordered
hase of cofinality «, (i.e. only one unifermity with a countable base).

Remark: It is in a way surprising, that in the case p =0 one can
from the fact, that there is ouly one uniformity with a linearly ordered
rase, conclude, that there is only one uniformity in toto. For g=0 this is
not true. Otherwise it would follow that X were metrizable by the theorem in
[ 10] just mentioned at the heginning of this chapter.

In the preceding proof we have used the fact that a metrizable space
is conmpact iff it is complete in every nietric compatible with the given to-
pology. We now give an analogous result for « ~metrizable spaces.

THEOREM 4.2.: An e -mtetrizable space is w~compact iff it 1§ o~complele
i every e -mietric compatible with the topology.

Proor: For y = 0 see [7]|. Therefore p¢=0. One direction is obvious-
IFor necessity assume X to be not o,.-compact, but nevertheless to be w,.-
complete in every m,-metric, i.e. every compatible uniformity with a line.
arly erdered base of cofinality o, is complete.

(A) X is not discrete.
Since X is assumed to be not e-compact there is an o, -sequence (2, <., N

X without an accumulation point. Let {38, : % <.} be a lincarly ordered base
for @ compatible uniformity £, where every 78, is an open partition of X,

1 A metrizable space is u:mpau iff it is complete in every metric compatible with
the inpn]ngv Foraproofsec ey [T], {17} p. 183.
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Since (z,) has no accumulation point and X is wm,metrizable, there are sets
Bg ¢B; with z,¢B, and z.4B,;, for y2a. We now put cf, = {BeB,:
7.4 B for y=a} and B, = 4,1yt U  Bl. Then we have:
1BE R Net |
1. B is an open partition of X with B <3 for g=«. Therefore they
constitute a linearly orderce base for a uniformity ¢,
2. Ty = tqe. This can be seen as follows: clearly v Cry since cvery
B. consists of ry-open sets. On the other hand every x¢ X lies at most
in one By, and for y=g, the sets in B’ which contain x are the same
as the sets in #.. Hence =2 1y4.
3. The cofinality of the base {B;:x-:m,} is clearly o,. Furthermore
{z:) is a Cauchy-net in Z{" and, since @ must be complete, (z,) must
converge, which yields a contradiction.

(B) X isdiscrele.

The assumption that X is not o.-compact implies card X = m,. Choose an
mg-sequence (z,) with z, =z for 2 « 2. Then define a {inearly ordered base of
cofinality w, for a uniformity @" which induces tie discrete topology on X
as follows: BB, = {{x}: x;22, for all y <, JU {{z): B<e}U{{zs f=<}}. Clearly
(z2) 1s a Cauchy-nct in 2" and must thercfore converge, which contradicts
the construction of the net (z,).

Now we give a characterization of e,-compact spaces in terms of em-
beddings in Hausdorif spaces.

THeOREM 4.3.: Let X be u regutar Ti-space. X is o.-compact [ff the
Jollowing is true: if X is embedded in an T,-space 'V, then for pc ¥ — X we
have a t <, such that p is contained in a G, -set in 'Y, which is disjoint with X .

ReEmaRrk: For u = 0 this is to be interpreted as *“... p is contained
in an epen set in V. .."". The proof is an easy exiension of the proof for the
case ¢ = 0.

A generalization of the fact that every compact and also every regular
Lindeldf space is paracompact is now given.

THeorEM 4.4.: If X is ant w~compact T-space and mg-additive for all
t=p, then X is paracompact,

Proor: By a well-known resuit of Micwacy it suffices to show that
every open cover @{ of X with || -z, has a closure preserving refinement.
Let @ be a cover of X such that |0 <o, and {V: V €@} refines <. Then
there is a =<y such that @ ={U., a<w: and 0 = {V;: 8 <e:} (with
possible repetitions). Then put for «<w: W, = U\U {l_t},-:ﬁcoc & Jv=u
(V;c U} By es-additivity W, is open, clearly 70 = {W,: o <wm:) covers X,
refines </{, and is locally = because if xeV,CU. and 8, y== then
VsW, = . But then 70 is closure preserving as X is we-additive.

The author is grateful to H. C. REICHEL and to the veferee for their
valuable comments.
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KREISSPIEGELUNG IN METRISCHEN AFFINEN EBENEN
UND IHRE KONSTRUKTIVE DARSTELLUNG UNTER
BESONDERER BERUCKSICHTIGUNG VON ENDLICHKEIT

Von

E. QUAISSER
Pidagogische Hochschule Karl Liebknechi, Potsdam

{ Eingegangen am 27, Februar 1979)
{ Revidiert am 12. Dezemnber 1979 )

in der vorliegenden Note wird von metrischen affinen Ebenen ausgegan-
gen, die euklidische und minkowskische (pseudo-cuklidische) Ehenen wm-
fassen und auf synthetisch konstruktive Weise mit Orthogonalitiitsrelationen
begriindet sind. Unter Kreisspiegelungen werden Abbildungen verstanden,
die gewisseu einfachen und aus der Elementargeometrie bekannten Eigen-
schaften geniigen. Fiir sie werden eine Reihe von Eigenschaften und kon-
struktive Darstellungen gegeben, wobei die fehlende Beweglichkeit, die
Existenz isotroper (d. h. selbstorthogonaler) Geraden und die Einschrin-
kung auf Endlichkeit hier die Besonderheiten sind. Isotrope Elemente er-
maglichen gerade eine sehr cinfache konstruktive Darstellung der Kreis-
spiegetung.

Die Note ist als einr Beitrag zu metrischen affinen Ebenen angelegt. Auf
Beziige zu Mobiusschen Kreisebenen wird hingewiesen. Ferner sei bemerkt,
dafl modelltheoretische Aspekte beim Aufbau der Geometrie auf der Kugel
von SCHREIBER [9] zu dieser Arbeit anregten.

1. Metrische affine Ebenen, Kreise

Wir legen im folgenden pappossche Ebenen (70, &) mit Fuano-Aussage
zugrunde, d. h. affine Ebenen iiber einem kommutativen Kérper K «der
Charakteristik =2. Bezeichnungen sind: A, B, C, ... (¢D) fiir Punkie;
a, b, ... (G mita b, c,... ) fir G(’md.fn; aﬂb fiir die Paraltelitar;
AB fiir die Verbindungsgerade. In der analytischen Darstellung identifizieren
wir die Gerade {{x, ¥): ux+vy+w = 0; &, v, we K, (u, v}=(0, 0)} zur Verein-
fachung mit (17, v, w).

Unter einer metrischen affinen Ebene wird hier eine pappossche Ebene
(Char=2) mit etner Orfhogonalitilsrelation 1 verstanden, die als bindre
Relation in ¢ durch folgende Eigenschaften bestinunt ist:

{nvarianz gegeniiber Parailelitit; Eindeutigkeil der Lote; Hohenschlie-
pungssatz (Ist ABC ein Dreieck und ist a eine Gerade durch A mit BC 1L a

2*
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und b eine Gerade durch B mit CA Lb, und schneiden sich ¢ und & in einem
Punkt H=C, so ist AB L CIIy; Reichhaltigkeitsforderung (Es gibt Geraden
ay, by, a,, b, mit a,, b #a,, b, und ¢, 10, i =1,2).

Diese axiomatische Charakterisierung metrischer affiner Ebenen kann
wesentlich abgeschwiicht werden; so ist bereits in Translationsebenen mit
einer Orthogonalitatsreiation der affine Satz von Pappos ableitbar. (Niheres
dazu und weitere Zusammenhénge finder man in [7], [8a] und anderen
Arbeiten des Verfassers.)

Die Orthogonalititsrelationen lassen sich (nach [7], 5. 28) analytisch
durch eine quadratische Form beschreiben. Es gift

) (v, )L, wyeun +in’ =0, wobei i(<0)¢K eine Konstante
ist.

Isotrope, d. h. selbstorthogonale Geraden sind nicht ausgeschiossen.
Vielmelhr umfassen die hier vorgesteilten metrischen affinen Ebenen gerade
die ewklidischen und minkowskischen (pseudo-ertklidischen) Ebenen. Letztere
sind dadurch ausgezeichnet daB sie (genau zwei) isotrope Richtungen be-
sitzen.

Fiir konstruktive Darsteflungen ist von grundlegender Bedeutung, dab
sich nach dem HéohenschlieBungssatz eine Orthogonalititsrelation Kkon-
struktiv beschreiben LiBi. Es gilt

(2) In einer papposschen Ebene (Char=2) gibt vs zu je zwei vorgegebencu
Geradenpaaren (ay, b)), (as, b,) mit a,, b, a,, by gentau eine Orthogonali-
fatsrelation L mit a; L, (i == 1, 2).

So erhilt man fiir a, = & und a, = b, gerade eine minkowskische
Orthogonalititsrelation, und fiir ihre konstruktive Darstellung aus dieser
Vorgabe kommt man bereits mit einer einfachen Parallelogrammkonstruk-
tion aus, wie Abb. [ zeigt.

a,(=by}

4

M
Abb. 7.

Ein Kreis wm M durch A (M) — kurz X(M, A) — sei die Menge aller
Punkte P fiir die P = A oder das Mittellot von (P, A) durch Af geht.
Es gilt:

Durch je drei nicht koltincare Punkie geht genau efn Kreis:

(M, A) = KMy, Ay M, = My A Ay € XM, A A Ay M.
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Inshesondere heidt X (M, A} isofrop, falls M selbst zum Kreis gehort.
Er besteht gerade aus den beiden isotropen Geraden durch M. (Er existiert
nur in einer minkowskischen Ebene; so ist in Abb. [. X(M, A)) = a,Ua,.)
Mit der konstruktiven Darstellung der Orthogonalitiit ist auch die der Kreise
gegeben:

(3) Es ist Pe X(M, ANMA genau dann, wennt P Schaittpunkt einer von MA
verschiedenc amsofropm Geraden durch A mit ilirem Lot durch B ist,

wobci B durch AM = MB bestimmt ist (Abb. 2. (A, B) wird ¢in Durch-
messer von X{M, A) genannt).

HMA)

Abb, 2,

Dies gitt also auch fiir isotrope Kreise. Aus (3) ergibt sich ein Schnitt-
verhalten fiir eine anisotrope (ierade mit einem Kreis wie in der klassischen
Elementargeometrie; inshesondere folgt

(4) Dureh jeden Punkt P eines anisotropen Kreises X mit dem Mittelpunkt M
weht pertant cine Tangente f, d. h. eine anisotrope Gerade, die mit £ genau
eincn Punkt gemeinsam hat. £s ist £ 2 MP.

Fiir isotrope Geraden gilt

(3) Jeder anisotrope Kreis hat mil jeder isotropen Geraden, die nicht durch
seinent Mittelpunkt gelit, genar einen Punkt gemeinsam.

Bewetls. Die Eindeutigkeit ist nach (3) klar. Den Existenzbeweis fiihren
wir in Hinblick auf die Zielstellung dieser Note konstruktiv. — Sei X(M, A)
anisotrop, /, und I, die beiden isotropen Richtungen und gef, mit M4g;
ferner kann Adg vorausgesetzt werden. Dann schneidet g die isotrope Gerade
aus f,, die durch A geht, in einem Punkt C (=M, A), und MC schneidet die
durch A gehende isotrope Gerade aus /, in einem Punkt D¢ AC (Abb. 3.)
Fiir die vierte Ecke P im Parallelogramm CADP gilt CP = p¢el,, CA€1,;
folglich ist MC = DC Mittellot von (P, A) und damit P¢X(M, A). |

Im endlichen Fall set n die Ordnung der Ebene, d. h. die Anzahl der
Punkte auf einer Geraden; dann ist # = p7 (r=1, p prim) und 7P| = n?,

(€1 = m+u. Nach (2) gibt es :« (n—1) cuklidische und %(nJrl) min-

kowskische Orthogonalititsrelationen in einter endlichen papposschen Ebene
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(Char =2, also n ungerade). Ein anisotroper Kreis besteht in ciner euklidi- .
schen Ebene aus 11+ 1 und in einer minkowskischen Ebene aus 11— 1 Punkten,
von denen keine drei kollinear sind. {n euklidischen Ebenen ist also jeder
Kreis ein Oral. Umgekehrt gibt es zu jedem Oval X eine (und nur eine)
Orthogonalitiitsrelation derart, daB X Kreis ist (siche [8a], $. 77).

2. Spiegelung an einem Kreis

[m folgenden betrachten wir einen Kreis X mit dem Mittelpunkt Af
und erkliren

I{M}, falls (77, €2) euklidisch
I i 1=+ die Vereimigungsmenge der isctropen Geraden durch M, falls (D, &)
lminkowskisch.

Konstruktiven Vorstellungen von einer Spiegelung o an X entsprechend ge-

hen wir von foigenden Eigenschaften aus

(S) PcX P =P,

(S2) P> M—Poc MP\{M},

(S3) M, P, Q nicht kollineur A MP L PQ=MQ" L Q=P.
Es gilt der Satz

6) (ay fst X anisofrop, so gibt es genait cine Abbildung o vom P\ auf sich
mif dent Eigenschaften (S1)—(53). Sie ist einc Bijektion.

{(b) Ist X isoirop, so gibt es keine Bijektion ven D auf sich mit dent Eigen-
schaften (51)—(53).

Die in (6a) vorliegenden Abbildungen heifien nun Kreisspiegeluigen.

Wir skizzieren einen analytischen Beweis fiir (6a); dabei kann von M =
= {0, 0} und A = (i, 0) ausgegangen werden. Auf der Grundlage von (1) er-
hdit man zundchst

K(M, Ay = {{x,y): 2x*+y* = A}.

Die Voraussetzung P e\, ist Aquivalent mit 2x*+ 250, wobei P = (X, ).
Nach einigen Rechnungen ergeben sich fiir das Bild P2 = (x’, y’) des Punktes
P bei einer Abbildung & von ¢O\1,,; in sich, die die Bedingungen (51)—(53)
erfiillt, die Beziehungen
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(?) x' = e xi —, J}' — .‘L A

AXT4 R Axt4t
Damit ist die Existenz- und Eindeutigkeitsaussage sowie die behauptete
Eineindeutigkeit in (fa) klar.

Diese Bijektion kann auf Punkte Q(= M) aus I, — falls sie existieren —
nicht erweitert werden, wie folgende Betrachtung zeigt. Der Kreis mit dem
Durchimesser (M, Q) ist isotrop und schneidet nach (3) den anisotropen
Kreis ¥ in einem Punkt P AMQ, fiir den MP 1 PQ wegen (3) gilt. Nun wiire
aber M~ L @Q°P und damit PeMQ® = MQ. Zum Beweis von (6b) sei X
isotrop und RePD\ X, und es gibe eine Bijektion o von 77 auf sich, fiir die
(S1)—(83) gilt. Die Orthogonale zu MR durch R schneidet & in Punkten
A, A,=M; siehe Abb. 1. Dann ist nach (51)—{S3) sofort R* = M im
Widerspruch zur Voraussetzung fiic o

Die noch folgenden konstruktiven Darstellungen ergeben auch die Miig-
lichkeit eines synthetisch-konstruktiver Beweises fiir (ﬁa)

3. Einige Eigenschaften

Fiir eine Kreisspicgelung « ist anhand von (7} einsichfig
{81y P° = P=P¢ X (Erginzung zu (S1))
(84) o ist imvoldorisch (d. . o= T und oo = 1).
Auclh dafiir wie fiir das Folgende bieten sich zum Teil spiter synthetische
Beweise mit Hilfe der konstruktiven Darstellungen an.
(S3) Ist g cine fierade, so ist
() (g (A = o {M), fulls p3 M und g anisotrop
(0 (\J )y U{MY ein fanisotroper) Kreis, falls g+ M und g anisotrop
() (AT y =Ty, falls gu M, g isotrop und It dicjenige isotrope Gerade
ist, die sich mit gy auf ¥ schneidet.

BewEkis. Die Eigenschaft (a) ist nach (52) sofort klar. (b} folgt aus (53)
in bekannter Weise, und {c) bestiitigt man mit (7) durch Rechnung. §

(86) Ist P41, und PP, dann gilt
(XN Yy = X\, fiir jeden Kreis X, mit P, P7¢X .

Zum Beweis nur einige ANMERKUNGEN. Wegen P4/, ist M¢ XK. Ist der
Kreis &, isotrop (was nicht ausgeschlossen ist), dann ergibt sich (86) sofort
aus (S5, c) Fiir anisotrope Kreise & bestittigt man <ie Behauptung nach
einigen Rechnungen.

Faills MM, den Kreis X, schneidet — wobei M, der Mittelpunkt von
¢, ist — geniigt die Aussage

(ST) Wenn P, Q, R¢ 1y, QEMP, R¢ MP und PR LOR, s0 PR L QPR

die sich einfacher bestiitigen LiBt.
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Aus dieser Eigenschaft folgt fiberdies in bekannter Weise der im Ver-
gleich zu (S6) dl]'funemele Satz, dab das Bild cines Kreises X, (mit M¢X,,
der von MM, geschnitten wird), wieder ein Kreis ist, wenn von Punkten aus
Iy ahgcschcn wird (Kreisiimarianz ).

Da in der vorliegenden metrischen Geometrie eine freie Beweglichkeit
nicht besteher muf, schoeidet nicht unbedingt jede anisotrope Gerade g
durch den Mittelpunkt A eines anisotropen Kreies derr Kreis selbst. Die
Relation g~/11 < cs gibt Punkie M, Ach derart, dab die Parallele zu g
durch M den Kreis (M, A) schueidet bedeutet fiir anisotrope Geraden,

daB g in /i beweglich ist. Sie ist cine Aquivalenzrelation und stimmt mit der
Kontmensurabilitit aus [7], [8a] iiberein. In endlichen Ebenen gibt es genau
zwei Aquivalcnzklassen.

Darauf aufbauend wird ein anisotroper Kreis ZX, @hnlich zu einem an-
isntropen Kreis &, genannt — X, ~ &, —, wenn es zu A< X, einen Punkt
Be X, derart gibt, “dab M A~ M, B ist, wobei M,,M die Mlttclpunkte dieser
Kreise sind. (In der Tat :st dies eine Ahnlichkeit im klassischen Sinn, nim-
lich als Produkt cine Bewegung und einer Dehnung.) n endiichen Ebenen
hat diese Alinlichkeit ~ zwei Aquivalenzklassen. Das bestiitigt folgende ein-

1n—1
fache Uberlegung. Ist P< 1., so gibt es offenbar — anisotrope Kreise
wm M, die MP schaeiden; diese erfassen bei euklidischer Metrik

n— n—1 i
len =002 5 1PVl

Punkte und bei minkowskischer Metrik

=2t ] ,
L= 222000 = Dy,

... <

Punkte. Folglich gibt es noch anisotrope Kreise um M, die MP nicht

sclineiden, aber aus Michtigkeitsgriinden selbst wieder in einer Klasse be-
zilglich ~ liegen miissei.
Fiir endliche Ebenen ist nun einsichtig

(88) Sind K| wmnd K, anisotrope Kreise wnd (X0 ) = (KN ), so isf

o

Ky

Durch {86} werden Kreise ausgezeichnet, die bei der Spiegelung an X in sich
iibergehen. Spezicll kann man nach derartigen Kreisen fragen, die kozen-
trisch zu "X sind. Fiir endliche Ebenen ist bemerkenswert

(89) Es gibt genau einen zu X kozentrischen Kreis X, (= XY mit X = X,.
Uberdics gibt es ofine Eiuschrdnkang auf Ena‘!whkett einen demrﬁgen
Kreis X, mit X, ~ X genau dann, wenn — 1 quadratisch im Koordinaten-
kdrper isl.



KREISSPIEGELUNGEN IN METRISCHEN AFFINEN EBENEN 25

Bewers. Fiir eine Kreis X, mit dieser Eigenschaft mufi der Mittel-
punkt M von X auch Mittelpunkt von (P, P°) fiir alle Punkie P& X sein.
Aus (7) ergibt sich dann far X, die Gleichung

AXE4 Vi = 4

d. h. die Einzigkeit besteht fiir jede metrische affine Ebene.

Die Existenz folgt fiir endliche Ebenen aus dem simplen Sachverhalt,
daB bei der Spiegelung an X die Kreise um M paarweise einander zugeord-
net werden; wegen X7 = X und 2f(n—1)~1 muB cs deshalb noch einen
Kreis X, mit X} = X, geben.

Die Existenz besteht auch in gewissen Ebenen, die nicht endlich sind.
Di¢ Existenz eines kozentrischen Kreises "€, = X mit Xj = X, und X ~X
ist gleichwertig damit, dah es einc Dehnung

X'—xu, yi—yu (ueK)

gibt, die X (mit der Gleichung 2x2+y* = ) in X, mit der Gleichung
Ax*+y? = -2 ilberfithrt, also dquivalent damit, daB es im Koordinaten-
korper K ein u mit u* = —1 gibt. |

4, Konstruktive Darsteliungen

4.1, Eine klassischen elementare Konstruition des Bildes eines von M
verschiedenen Punktes P¢ X bei der Spiegelung o an X(M, A) legt die Tan-
genten von P an den Kreis X und bestimmt P~ als Mittelpunkt der Tangen-
tenberithrungspunkte oder bringt — falls dies nicht geht — die Orthogonale
zu MP durch P zum Schnitt mit dem Kreis und bestinimt P7 als Schnitt der
Tangenten durch diese Kreispunkte (Abb. 4.). Diese Konstruktion ist hier
auf Grund der Eigenschaften (S1)— (53} gerechtfertigt. Es Dleibt aber offen,
ob sie stets ausfiihrbar ist.

Wir betrachien dazu folgende Punkte:

P heibt duberer Punkf von X genau dann, wenn £ Schoittpunkt zweier
Tangenten von X ist; 2, bezeichne die Menge aller dieser Punkte. Die
Punkte von PD\(7,.'JX) heiBen innere Punkte (0,.). Von WLODARSKI [10}
werden verschiedene Auffassungen des ,,Inneren von X* und ihre Beziehun-
gen zueinander studiert; D,\1,,. catspricht W, (CX) in { 10]. Ferner heibt P
Sehnenmiltelpunit von X genau dann, wenn er Mittelpunkt zweier ver-
schiedener Punkte von X ist; die Menge dieser Punkie wird mit 7D, be-
zeichpet.
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Die obige Konstruktion und damit die Kreisspiegeiung o stiftet nun
offenbar eine Bijektion von P,, auf PN M}; also ist |2, = |"DNM}.
Fiir endliche Ebenen der Ordnung 1 ergeben sich folgende Michtigkeiten

i Pexi Mg I'Pinl

. (=1 2+ ] nE—2n—1

euklidische Ebene ( ._..__).S ) _ .
2 : 2 2

- - t—d4dn+5 224 20—

minkowskische Ebene | Gz l)(” 3) | n ')” .. : ’__.__')____

Es ist nicht jeder Punkt von P\(X'UJ ) ein Punkt aus 0, oder aus
DM}, Wir betrachten dazu als Beispiel in einer euklidischen Ebene cine
Gerade g durch den Mitteipunkt M = (0. 0) von £, die & schneidet, ohne
auf die fiir sich interessante Frage nach der Vertei]ung von 7., 7, und
D, weiter einzugehen.

Fiir eine analytische Betrachtung kann ohne Beschrinkung der Allge-
meinheit angenommen werden, daf (I 0y auf g liegt. Anhand von Abb. 4.
bestiitigt man durch Rechnung, daB

O 1= {[/_t_“: . 0] cde K, u=--0, ”2#;{}

i—u?

ilie Menge aller fiuBeren Punke und

{[_;-_-“;_ OJ: veK. a,z:O}
PR

die Menge aller Sehnenmittelpunkte (von zu g orthogonalen Sehnen) auf g
ist; dabei gilt 2+a2=0, da die Ebene euklidisch ist. Nun ist g.ng,=0
gleichwertig damit, daB es von O verschiedene Elemente g, b¢ K mit (7 —a?)-
A=) = (A+0)- (04, d hoomit @ - -8 gibt,

Demnach folgt aus g,.ng+0, dab —1 quadratisch in K ist. Dann
gibt es aber in K zu jedem <0 ein b0 mif 2 = —§% Auberdem ist dann
w?= 7, da a*# —2 gilt. Demnach folgt aus g Mg, =0 bereits g, = g,. Dic
Menge g, besteht also entweder nur aus dufleren oder inneren Punkten.

Die obige Konstruktion liefert deshalb nicht unmitietbar alle Bilder der
Kreisspiegelung. Man kann sie jedoch leicht vervollstindigen. 1st Pz
1P P U T, 80 schineidet das Lot £ zu MP durch P (w enlmatenc;) eine
Tangente von _X; I enthilit also wenigstens einen duBeren Punkt . Das
Bild von btshmmt man nun nach der ohigen Konstruktion, und P ist
schlieBlich nach (83) der Schnitt des Potes zu MQe durch Q" mit der
GGeraden MP.

4.2, Eine weitere Konstruktive Darsteilung erhillt man ber Sfeinerschie
Kegelschiifte. Nach (3) und dem HohenschlieBungssatz ist jeder anisotrope
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Kreis X ein Schnitt zweier echter prejektiver Geradenbiischel, also ein
Steinerscher Kegelschnitt (in der projektiven Einbettung der Ebene).
Er ist elliptisch oder hyperbolisch je nachdem, ob die Ebene euklidisch oder
minkowskisch ist. Nach einem Satz der projektiven Geometrie (sieche u. a.
Lenz {4], S. 62) gilt: Zu jedemr Punkt P4 XU, gibt es genau eine Gerade p,
so dap die involutorische (P, p)-Homologie X in sich abbildel. Uberdies ist p
nichl Tangente vonn X, M¢p und — wie man durch Orthogonalspiegelung
an PM erkennt — pLPM. Die Gerade p 1Bt sich konstruktiv durch Se-
kanten von ‘X durch den Punkt P bestimmen (vgl. Abb. 5.). Man hestatigt
leicht, daB die Abbildung

T :@\I;\-I_'//)\It" Vermﬁge
_‘{Schnittpunkt von p, PM; falls P5 X
P;falls PcX

Abb, 5,

die Eigenschaften (S1}—(53) erfiillt, und nach (6a) ist deshalb = die Spiege-
lung an “X.

Die vorgestellte Konstruktion arbeitet uneingeschrinkt fiir jeden Punkt
P&l

4.3. Durch die Inversionen, die MOLNAR in [5] mit spiegelungsgeome-
trischen Methoden auf der Idealebene metrischer Ebenen (im Sinne von
Bacumann [I]) behandelt, hietet sich eine weitere konstruktive Darstel-
lung der Kreisspiegelung an. In [3] sind jedoch die minkowskischen Ebenen
ausgeschlossen. Anhand der Kreisdefinition kann jeder Kreis X(M, A) als
Menge aller Bilder von A (als Orbit von A) beziiglich der Orthogonalspie-
gelungen an den anisotropen Geraden durch M aufgefaBt werden. Wir er-
halten damit Anschlufl an die spiegelunggeometrische Darstellung bei
MowLnAr. Entsprechend dieser wird unter einer fnversion o mit dem Zentrum
M eine Abbildung von D\, auf sich verstanden, bei der alle Punkte
P, Q, R¢ i, mit P=Q, Qe MP gilt, daB P* =Q, @« = P und das Bild R*
mit dem Bild von R bei der Spiegelung an dem Let von dem Mittelpunkt
des Kreises durch P, Q, R auf die Gerade MR iibereinstimmt {Abb. 6.).
Entsprechend den Methoden in 5] kann auch fiir minkowskische Ebenen
gezeigt werden, dabl es zu je drei verschiedenen kollinearen Punkten M, P, @
genau eine Iaversion « mit dem Zentrum M gibt, beider P* = Qund Q* =P
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ist. Die in AbD. 6. vorgestellte Konstruktion ist nun fiir cine konstruktive
Darstellung der Kreisspiegelung sofort nutzbar.

Abb. 6.

Denn, nach (56) ist jede Kreisspiegelung eine Inversion. Umgekehrt
erfiillt jede Inversion mit dem Zentrum M die Eigenschafien (82) und (53).
Besitzt sie iiberdies noch einen Fixpunkt I, so ist auch das Bild von F bei
der Orthogonalspiegelung an einer anisotropen Geraden durch M ein Fix-
punkt von o, d. h. fC(M F} bleibt punktweise fest. Demnach ist eine [n-
version genau dann eine Krelsspiegelung, wenn sie efnenr Fixpunkf besifzt.

Uberdies gilt

(8) In endlichen Ebenen st jede version cine Kreisspiegelung.

Denn um einen Punkt M gibt es — wie wir hereits feststellten — n—1
Kreise; diese bilden einen Punkt ££[f,, auf #--1 verschiedene Punkte im
MM} ab. Wegen |PAN{M}| = n—1 gibt es aber auch nur n—1 ver-
schiedene Inversionen mit dem Zentrum M.

4.4. Es ist bekannt, da8 in der minkowskischen Geometrie die isotropen
Elemente Ausnahmen hei Aussagen bilden und damit eine glatte Formulie-
rung von Resultaten stéren. Bekannt sind aber auch eine Reihe von Bei-
spielen, in denen die isotropen Elemente perade zu einer vereinfachten Be-
schreibung von Sachverhalten beitragen kinaen; so auch in spiegeiungs-
geometrischen Darstellungen. (Dort arbeitet man u. a. mit ,,unverbindbaren
Punkten.)

Auch hier besteht eine derartige Moglichkeif, Der Satz (55, c) bicetet ¢ine
vereinfachie konstruktive Darstellung der Kreisspiegelung in minkowskischen
Ebenen.

Man legt durch P4 [, die beiden isotropen Geraden g, und g,; diese
schneiden nach (3) den Kreis X in Punkte B, und B, (Ahl), 7.}. Auf Grund
der Eigenschaft (S5, c) ist das Bild g7 die Parallele zu g, durch £, und das
Bild g5 die Parallele zu g, darch A. Demmnach ist P deljemge Punkt, fiir
den P PP P Parallelogramm ist; iiberdies liegt er auf PM. Bet vorliegendem
Kreib geniigt somit eine cinfache Pd.laHCIU(’]d[I]lllkU[lthleth!]

Zum Abschiufi einige

Anmerkungen
I. Ergiinzt man eine cuklidische Ebene durch einen [dealpunkt als

gemeinsanen Puntkt aller (anisotropen) Geraden und erklért alle Kreise und
(anisotropen) Geraden als Zirkel, so erfiillt liese Inzidenzstruktur der Punkte
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und Zirkel dic Axiome einer fiversent oder Méibius-Ebene. (Vgi. DEMBOWSKI
[2] KirTEszI [3]; die Bedingungen (1), (2) in [2], 5. 252/253 schlieBen eine
miglichst entsprechende Einbeziehung minkowskischer Ebenen aus.)

_(\.O

S

Abb. 7.

2. Es liegt nahe, Eigenschaften der Kreisspiegelungen bereitzustellen,
die in Anlchang an die Arbeit [6] von MoLxAr einen axiomatischen Aufbau
der Kreisebene tiher einem beliehigen [Kérper oder auch speziell iiber einem
endiichen Kérper (Char =2y auf der Grundlage von Spiegelungen ermiglichen.
Bei Endlichkeit kann dabei die Eigenschaft (S9) méglicherweise recht
niitzlich sein. In [6] wird eine solche Daurstellung fitr Kreisebenen {iber
pythagoreischen Kérpern gegeben.

3. Biischel, Orthogonalititsrelationene und Kreise stefien in einem engen
Zusammenhang {siche u. a. [8a]; KLoTzEK/QuUAISSER in Muafh. Nachr., 58
(1973); Klotzek in Wiss. Z. PIf Potsdamn, 21 (1977)). Eine einheitliche Be-
handlung cuoklidischer und minkowskischer Ebenen hier in dieser Note
liiBt eine migliche Einbezichung minkowskischer Ebenen im Rahmen der
Arbeit [5] von MoLxdAnr erwarten.

Fiir freundliche Hinweise michte ich Herrn Emin MoL~Ar danken.
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§ 1. Introduction. Recently Conway amd Jones [1] have given an
effective method of solving equations of the type

(1.1 oeosad,+.. .o cosgd, = FE

where all the variables involved are rational. They explicitly give all the
solutions of (1.1) for r = 4 (theorem 7 of {1}) and it is fairly easy to extend
the result to r = 5, 6, ...; the calculations, however, get more tedious as
n gets large.

In bocks an elenmentary trigonometry one sces a large numnber of for-
mulae in which the right hand side of (1.1) is a quadratic irrational. Indeed

for any integer n1>0, Y1 can always be written as a rational linear combina-
tion of cosines of angles that arc rational multiples of = (since Vn ¢ the
maximal real subfield of Q(e2#47)). Let 2 = A(Yn) denote the least number
of cosines needed to express Vu in the above wiy:

(1.2) Vir = ¢ cosad, + ... ~e 00574,

{¢;, d; rational). The object of this paperis to determine 4 in the case when #
is a prime number p and to give all solutions of (1.2) for n=p. In §2 we
shall consider rational linear combinations of

(i): sinap, sin 27'p, .., sin(p—1ap and
(il): coszip, cos 2=ip, ..., cos {p—1)a/p,

which lie in a quadratic extension of @. In § 3 we solve the cquation
(1.3) ccosxd ...+, c057d, =¢c+dYp

(¢ d; b, d rational, o =0 and r minimal) and show that the results of § 2 al-
ready give all the solutions of (1.3). In §4 we determine (¥ p) and solve
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(1.2) completely for 1= p. The relation between (Y p) and the minimal r
of (1.3) will appear in the text. Finally in §5 we shall completely solve
the eqguation

g cosad,+ ... +ecosady=ctdVp (e, d;, c,deQ, d=0)

for ! = 1, 2, 3 and make some remarks.
In this paper we have exclusively looked at the case n = p (a prime).
The more difficult problem of expressing ¥ 1 (n composite) as a rational linear

combination of cosines in a minimal way (i.e. involving the least number of
cosines) will be iooked at in a later paper.

1t is easy to see (§ 4) the impossibility of expressing ¥ it (m=2, i positive
integer) as a rational linear combination of cosines, thereby making the
results of § 3 and § 4 more satisfying.

82, Let p be an odd prime. In this paragraph we shall be considering
rational linear combinations of

(i) sin ={p, sin 2a/p, ..., sin(p—1)=/p and

(ii) cos sfp, cos 2=fp, ..., cos (p— 1) =/p,
which are either rational or lie in some guadratic extension of the rationals.
Since sin jafp =sin(p—Jf)=fp and cos jafp = —cos{p—jyz/p, we may
actually only consider rational lincar combinations of

(iY sin =/p, sin 2x/p, ..., sin % (p— D=fp and
(i1 coszafp, cos2afp, ..., COS -;— (p— Dya/p.

Thus we want to completely solve the two equations

(-2

2.1 > a;sinjajp = c+d¥n
=

(p—1)/2

(2.2) a;cos frufp = c+d Vn
Jj=1

where a;, ¢, €@ and n 1s a square-free positive integer. We have

Tueorem 1. (i) If d=0, neither (2.1} nor (2.2) cant have a solutfion unless
1= p, Forn = pthen, we hqve

(it) If p=) {mnod 4y then (2.1) still hus no selution for any p except the
frivial one with ¢ = d = a; =0 (for all j) while (2.2) is selvable uniquely for
evervy ¢, dc(Q, the solutivn being

a; = (= 1y {—2c+24 2fip)},

(itiy If p=3 (mod 4) then (2.1) has a solution if and only if ¢ =0 and
then the solution is unigue for every deQ and is givent by a; = (— 1Y 2d (2f/p).
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while (2.2) is solvable if and only if d =0 and then uniquety for every ¢¢Q
the solution being a; = (~ 1) * 2e.

We first prove the following

Lemma 1. Leét R denote quadratic residues mod p and N the non-residues,
then a, {+a, P+ .. +a, [ (P71 = c+d (= 1)e-D2p (a;€Q) if and only if
ay = —c~d ap = d—¢, where { = eil?,

Proor. First if ay = —c¢-d, ag=d—c¢ then q {+.. 1 LT =
=({d—¢c) DR _(c4-d) ZCN (d - c) DR (c+d)(—1~2f*?) (smce l+
+ZRE N =0) =c+d(1+2 LX) = c+dV(—D® Y2 p by the Gauss
sum as required. Conversely the linear independence of g, &2 ..., 6t
proves the result.

Proor oF THEOREM 1. (i) Let { = ¢27/7. Then

(2.3) sin jzr/p = { - s even
— (gt eve (‘:—(-’*PW)/Zi if j is odd

and

2.3y cos jzmfp = { (C""_2+C—If2)/2. tfj 15 even
_(QUtRR L Uty if i odd.

1t follows that the left hand side of (2.1) €Q(<, )N R. But the only quadratic
fields contained in Q(Z, {) are Q(¥ £p) and Q(i) (indeed that contained in

Q2 is Q¥ (— YP~Y72 p)), so in the right hand side of (2.1), n = p as re-
quired. Similarly for (2.2). This proves (i).

(ii) Here i times the left hand side of (2.1} €Q(¢) (by (2.3)) and the right

hand side €Q({) too (using the Gauss sum for ¥ p). Since i¢ Q(Z) so the feft
and right sides of (2.1) must both be 0. Hence ¢ =d =0 and a; =0 for all
f by the linear independence of &, £2, ..., {P~L

As for (2.2) write the cosines in 'terms of powers of { using (2.3Y and
applying lemma 1, the result follows.

(iii) Here { times the left hand side of (2.1) €Q(Z) by (2.3). Therefore

He+dY pYeQ(E), ie. ic+dV —peQ(E) ie. iccQ(l). Since i¢Q(D) it follows
that ¢ = 0. To get the solution explicitly use (2.3} and lemma 1.

Finally for (2.2) the left hand side €Q((), therefore ¢+dYpeQ(?) i

d}/peQ(c_,) SinceV pgQ(Z) so d = 0. To get the solution explicitly use {2.3Y
and lemma 1. This completes the proof of theorem 1.

§ 3. Throughout this paragraph we shall be using the notation and
results of [1]. Our object is to completely solve the equation
(3.1) A cos b+ ...+ A cosmafb, =ct+dVp

j» b; positive integers, (a;, b;) = I A, ¢, d tational, d0 and { minimal in
the sense that no subsum is of the type %+ yVp (x, rational, y.«0). We have
the following

3 ANNALES — Sectlo Mathematica ~ Tomus XXV.
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LEmMA 2. No b; can hiave an odd square factor.

ProoF. By using the expression for ¥(— 1% -D2p ax the Gauss sum
we can write the right hand side of (3.1) as a linear combination of roots of
unity which are ~ (equivalent to) ] or i {(in the notation of [ 1], we say 2 roots
of umty iy and 7 are equivalnet it o(y/J) is square-free). Now it s easy to sec
that S~ lorifandonlyif {7t~ 1ori.

Let n; = €% s0 that cos s a;fb; _-(:3-’+3, “Iyj2. Suppose for some j
(say j = l) ¢*{b, (g an odd prime). By theorem 1 of [ 1] the sum of the terms
in the left hand side involving roots of unity equivalent to [ or i must be
equal to the right hand side. The above considerations then give us a subsum

of Z A, cos a,fb, which equals c+dY p and this contradicts the minimality
L="1
of {. This proves lemmd

Now write :;JJ $T5; (€ = ey where (p, 0(Z))) = 1. This is possible

(for either b; = pb; (p{b}) or (p, b;) = 1. In the latter case ¢; = 0 will do.
In the former case wrlte I = \’p—’—'l’b with 1 even. Then

1 e fpriaipl NEpAI ] o pwia; il o o= o Fasewit o FEe
nj_;_({,-u ;fp _;)XP y j_c‘ﬂaj'{ JC—:mJ_\p ..,J,gui wi __j‘j

as required).
Now insert this in the relation (3.3) or (3.3) as the case may be and we
get: for p=3 (mod 4)

! @ "_., e e B £ . s
B4 AL AL e (ipditi—c =0
i1 j=1 =1

and for p=1 (mod 4)
i

! e —1 . "
@4 DAL S AT S (A e =0
i1 -1

j=
We then have the following
Treorem 2. (i) Let p=3 (mod 4). Suppoese (3.1) has a solution with
d =0 and suppose no subsum is of the iype ¢, 1,V p. Then
p=2I+1.
(i) Let p= 1 (mod 4. Hypothesis as in (i), then
p=4l+1.

Proor. (i) Suppose p=2[ + [. If a solution of (3.1) exists we can get o
relation like (3.4). Write it as

(3.5) Se+S i+ +8 -1

pr <P

Where each S, is a rational linear combination of roots of unity having
order prime to’ p- Since p;-’JI 1 there exists an r {some residue mod p) such
that r=0, te, +¢, ..., T and then —r (ie. p—r) 20, Lo, £e,, ..., Lo
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either. For such an r we have S, = (r/p) id (compare (3.4) with (3.53)) while
S,_, = (p r)uf = —(r{p) id since p=3 (mod 4). But by lemma | of [1],
p

p—r
page 233, all the §; are equal. Hence d = 0, a contradiction. Thus for a solu-
tion to exist, p=21+1.

(ii) Suppose p=>4{+ 1. Existence of a solution implies the relation (3.4Y
which we write as (3.5). Since p=-4{+ | there exists an r (a quadratic residue
mod p) and an # (a quadratic non-residue mod p) both avoiding the set
{0, ¢, ..., e} Forsuch an r and n, we get, on comparing (3.4) and (3.5)

S = —(ripyd =~
S,=—(nipd=1d.

Again by Lemma 1 of [1] all the S; are equal and so d = 0, a contradiction.
This completes the proof of the theorem.
Our main result is the following

THEOREM 3. (i) Lef p=3 (mod 4) and et p = 21+ 1. Then the equation
(3.1) has a unigue solution (up te a constant factor) viz that given by theorem 1
with the sines converted info cosines.

(ii) Let p=1 (mod 4) and let p = 4+ L. Then the equation (3.1) has exactly
2 solutions (up to a constant factor) viz the ones given by theorem | with ¢ = d
and ¢ = —d in the cosine solufion.

Proor. (i) The sine solution of theorem | converted into cosines is
certainly one solution of (3.1). We must show that any other solution is the
saime as this selution. Existence of a solution gives the equation (3.4) written
as (3.5). Then as sets

{0, ¢, Xy, ..., 2} ={0,1, ..., p—1},

for if the left hand side is strictly contained in the right hand side then the
argument of the fast result would imply di = —di i.e. d = 0, a contradiction.
Thus by lenammg the A; we may assume without loss of generality that

e;=f, —t; = —J, 50 that cos  a;fb; = (5 H!-i-u, __,J)/Q Further by Lemma 1

of [1] W{. ]1dV(. So=8=... :Sp_,. Thus comparing (3.4) with (3.5)
we get

TS B _ _
~e=Se=S;=(jipyid+ - AL (I=j=(p-1)2).

This glvea S5€Q(0), but [;4Q since dx 0 hence, being a root of unity, 7, =

= 4, ollows that ‘¢ =0 and $; = —2id(jip)fA;. Consequently A
cos T & /b = 2d(fp)sin 2 j{p. Hence (3.1) becomes
ooz . Lo (P12
2, 2(jip)sin2zjip =d¥p, ie Z (jip)sin2zjip -——]/p.
j=1 i=

which is just the sine equation of theorem I for the case p=3 (mod 4).

%
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(iiy In this case for ¢ = d and ¢ = —4d, in the solution of the cosine
equation of theorem I, there are exactly (p—1){/4 non-zero terms on the
left hand side of (2.2) because of the following simiple (proof omitted)

LEmMA 3. If p=1 (mod 4) then exactly one half of the numbers 2j (j =
= 1,2, ..., (p—1)2) are quadratic residues and the remaining half are quad-
ra{ic non- res:dues mod p.

This gives us the two solutions of (3.1) stated in theorem 3. We must
show that any other solution coincides with one of these two. The existence
of a solution gives the equation (3.4) written as (3.5). Then the set A =
={0, te,, +e,, ..., £g}equals

either {0, all the quadratic residues R mod p},
or {0, all the quadratic non-residues N mod p}.
For otherwise there exists an Ry and an N, hoth avoiding the set A. But then
Sk, = Sn,. 1.6 —(Ryfpd= —(NyJp)d, i.e. —d=4d giving d =0, a con-
tradiction.
Suppose first that A ={0, all R}, say ¢;,=R;, —¢;= —R; (j=1,2,
.+, (p—1)/4). Then (3.4)" becomes

(p=id | e ] el
?AJL;H J+ Z 2 AJ&}& J.—z (J‘/p)d‘b}_’c:o'
i=1 i-1 =1

Comiparison with (3.5) gives the following equations:

- I,z -
Sy = —¢, S.l?j AJ"J d, Sp—R}- = 2'14_,'(,;'_0“ Sy = —(N/p)(f =d
with obvious notation._’i’hen by lemma 1 of [1] all these S; are equal to each
other. This gives ¢; = ‘:f =4dfA; and d = —c. Then (3.1) becomes

-1

Z 4dcosQ-zRJ/p d(—1+¥p) e

(p—134 —
(3.6) > cos2aRlp = (—1+Vp)/4.
j=1

This we claim is the same as the soiution of (2.2) given in theorem 1 with
¢ = —d. First of all we shall make the angles tally. Then the uniqueness of
the solution in theorem 1 will imply the result.

The solution of (2.2) for ¢ = —d according to theorem [ is

(P12 : . _ ,
(3.7) S (— 1Y 2{+@2jpheosajip=—1+Vp.
i=1
In one half of these terms jis even = 2j, say. The corresponding term

equals 2{1+(j,/p)} cos (= 2§,{p), (l<:j,<(p—l)/4) In the remaining half
j is odd and so p—j is even = 2j, say. The corresponding term equals



ON EXPRESSING ¥p a7

—2{1+((2p—4j)Ip)} cos (wlp —272)/p)), (P +3)4==(p-1)/2),

= 2{1+(Jo/p)} cosz 2/,{p
where

(p— 1)+ 1=fo=(p=1)/2.
Thus the left hand side of (3.7) is
(p—1)2 _ -
> 2{+(jip)cos2mjip = 1| ¥Yp ie. cos 2zjlp=(-1+Vp)4,
j=1

where the sum is taken over j = the quadratic residues up to (p—1)/2. By
lemma 3 this last sum is just (3.6).

The second possibility is A ={0, all N (the non-residues)}. Then by a
reasoning exactly as above we get

{(p—=1)/4
>, cos2z N,fp = —(1+Vp)/4,

i

which as before is precisely the solution of (2.2) given in theorem [ with
¢ = d. This completes the proof of theorem 3.
Just for completeness we say a word about p = 2. In this case (3.1)

becomes A, cosma, /b + ...+ A, cosma b, = c+dy2. But —2d cosxm/d =
= —dy2. Adding we get A, cosma,fb,+ ...+ A, cos wa,fb—2d cosmfd = ¢
and this is taken care of by the results of [ 1]
§ 4. We first prove the following
THEOGREM 4.
AP = {(P" 1)/2 ff p=3(mod4),
(p+3)4 if p=1(mod4).

Proor. From the results of § 3 we see that for p=3 (mod 4), if p=>2{+1
then (3.1) has no solution while if p = 2[4 1 then there is a unique solution in
which necessarily ¢ = 0. Thus ¥p may be expressed as a rational linear
combination of (p—1)/2 (and no fewer) cosines, so A(Yp) = (p—1)/2 in
this case. Similarly for p=1 (mod 4) we can write (— 14+ p)/4 as a rational
linear combination of (p—1)/4 cosines. Hence A(¥ p)=1+(p—1)j4. But by
theorem 3, A(Y p)=>(p— 1)/4, hence A(Y p) = (p+ 3)/4 in this case.

We shall now determine all possible solutions of (1.2) for n = p.

Tueorem 5. (i) For p=3 (mod 4), (1.2) has a unique solution given by

- (p—1)2 (2 .
Vp=2"3 (- 1)1[*-] cosjfp,
i=t P
(ii) For p=1 (mod 4), (1.2) has exactly two solutions given by

Vp= 2cosaf3+4 = (—icoszjfp,

; —1 .
1sjst—, @im=1
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and

Vp= —2cosmf3—4 > (— 1) coszjip,

-1 .
p_z L ipy=—1

|y ]
unless p = B, in which case (1.2) has one further solution viz
V5 = 2cosaf3+2cos 2f5 .
Proor. (i) has aiready been proved in theorem 3, part (i). As for (ii} let

- (pe3A
Vp = > ¢;cosza;fb, Here we may suppose that none of the cosafb;

=1
is rational for otherwise the result has already been proved in theorem 3,
part (ii). Let j; = ¢=%%; and [ = ¢**¥P, then
(p+3)l -
(4.1) 2 c;tnf+m, N2 =Vp= 30
i=t H(p)

by the Gauss sum.

Notice that Z*~ 1 for all x and nf~ 1 if and only if n;*/~ 1. Splitting
the above relation into equivalence classes and applying theorem 1 of [1],

we get
(p+3)y4

L2 e 2=V

5 ool =1

Singe }(Vﬁ) (p+3)4 so 1;J~1 for all j ie. a(;;l) is square-free, so

we can write n, b= Z; where 0<e ;=p—tand I;is aroot of unity whose
order is prime to . Now write (4.1) ir1 the form

4.2 Vp=Se+8 i+ 45,
where each S is a linear combination of roots of unity whose order is prime

to p. Further S = SJT and S, = S, even as expressions (and so certamly in
value as CO[IIp]LX numbers). Also (denoting the number of terms in S; by
1S

—1
(4.3) pz 1S, = (p+3)/2  ((by (4.1) and (4.2)) .
i=0

[n (4.2) write Yp=§+2 Z {® and apply lemma | of [I]; we get
=1

(Rip
Se—1= SR 2= 35y (where (pr) = —1). If the value of Sy=0, —1, =2
1hen |S;i =1 for all j and by (2.3) (p+3)/2=p i.e. p=3 which is not pos-
sible. 80 let Sy=0, —Lor—2ic¢. S,=1,0, — ). Firstlet So=1o0r — 1.
Then §, = a proper subsum of (1.2) that is ratienal. In view of theorem 2,
part (ii), S, = acosm{3. Hence by theorem 3, part (ii), there are only 2 such
solutions of (1.2) as required. Finally let §; = 0. Then by the minimality of
(1.2), S, is the empty expression. Hence value of S, = —1 and value of
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Sp=1and so ‘p":_3 2 |Sif=p—1, i.e. p=3. For p=25 we must have
1§;l=tforj=12,.. ,p—l and then Sy = —1[, S5 =1 even as expres-
s;om, Thus (1.2) is V5 =722 _% Z=¢m5 and so (1.2) is V5 =
= 2cosf3+2cos 225, This complctcs the proof,

§ 5. Examples and some remarks

(2). Hete we shall solve (3.1) for small values of I. First fet { = 1. Qur
equation is then A cosm afb = ¢+dY p. By our results this has no solation if

}{2[_}_ [ (p=3(mod 4)},
4+ 1(p=1(mod4)).

Thus solution is possible only if p = 2, 3, 5. Indeed in this easy case we may
just as easily look at the equation A cos2xafb=c +d’Yn (n composite
allowed) i.e. on dividing by A the equation cos 2= afb = c+d¥n [c, d€Q,
i, a, beZ, n>=1, (g, b) = 1]. Since cos 2x/b == (2774 - ¢=2716}{D 50 cos 2nfb
and so also cos Zrafb belongs to the maximal real subfield of Q(e2/p).
Hence cos 2 ajb is of degree ¢(b)/2 over Q. But cos 2z ajb = c+dy n which
is of degree 2 over Q. It follows that ¢(5)/2 = 2 giving =5, §, 10, 12. The
respective solutions with angles lying between 0 and /2 are cos=/5=
= (1+V53)/4, cos2m/5 = (—1+V5)/4, cosm/d=V2/2 and cosz/6=¥3/2
and no others.

Next let =2 Our equation now 18 A Coswafb + B CoS x dyfb, =
= ¢4-d¥ p. Solution is possible only if p = 2, 3, 5. On dividing by d we get
A cos o a,fby + B cos x ayfb, = ¢+ ¥ p. First let p == 2. Subtract from this the

equation 2 cos /4 = ¥2 and we get A cosza, /b, -+ Bcosma, /b, -2 coszf4 = c.
This equation has been solved in [1] {theorem 7). There is only one solution
viz mf3— 6 = zfdi.e. @ = x12 and then {3+ O = 5x/12. Hence cos=fi2—

— 08 57/12—cos wfd = O i.e. cos /12— cos 5f12 = Y2/2. Similarly for p = 3

use 2cosx/6=¥3 and for p=>5 use cosm/5=(1+¥5)/4, cos2x/5 =
= (- [+¥5)/4. For p = 3 we get no solution; for p =5 we get the follow-
ing two solutions: cossf15—cos4m15 = (—14+}¥3)/4 and cos 2mf15—
—cos 77/15 = (1 +¥5)/4. We proceed likewise for { = 3. Our results are coi-
lected in

THEOREM 4. All the solutions of (3.1) for I = 1, 2, 3 are the following

f=1: 4cosf5 = 1+V5, 4cos2z/5 = —1+¥5, 2cosw/d = V2, 2cosx/6 =
=3,

I=2: 2cosmf12—2c085mf12= Y2,
4cosaf15—4cosdaf15 = — 14+V¥5, 4cos 2/15— 4 cos Twf15 = 1+ V3,
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[=3: 2cos=/14+2cos 3z/14— 2 cos 514 = V7,
4cos/13+4 cos3n/13—4 cos4=/13 = 1+ V13,
4 cos 213 —4 cos 5o/ 13+ 4 cos 6f13 = — [+ 13.

(b). We remark here that no other pure surd yq (=2, a=1} can be
written as a rational linear combination of cosines (we assume of course

that a is not a p™ power if p|n). Write « = Ja. We split 2 cases.
Case 1. n is not a power of 2. Then there exists an odd prime p with

p
pln. Let =P =V¥a. Then the Galois group of the splitting ficld of
XP—u (i.e. of Q(B, €27¥F) over Q) is isomorphic to the group of transforma-
tions z—cz+4d (c, d integers mod p, ¢#0) and this group is non-Abelian.
Thus 8 does not lie in any Abelian extension of ¢ and so not in any cyclo-
tomic field; thus nor does «. It follows that « can not be written in terms

of cosines.
1

Case 2. n is a power of 2. Since n>2 so 4|n. Here let § = 2" = }a.
Now X*—a is irreducible over Q(i). Let ¢ be the automorphism of Q(8, )
given by o(f) = i, e(i) =i and v by =(8) = 8, (i) = —i. Then sr v and
so 84 any cyclotomic field, so nor does «.
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81 Intreduction and some lemmas

For any integer n (since the field Q(¥ n)c some cyclotomic field) ¥n
can be expressed as a rational linear combination of roots of unity:

(I Vn = R R R

~We define _p(]/ﬁ) to be the least value of k for which (I) holds. Clearly
w(f —11) = u(Y 11y and so we may always take n=0. In {2] we defined i(Yn)
to be the least k for which the equation

(11) Vi =¢ cosa st ... 46, C08 a4

has a solution with ¢;, 4;,€Q. The object of this paper is to get bounds for
w(¥ 7)) and to detcrmmc the exact value of @(¥n) for n=p and pq (p, q
distinct primes). We also relate the quantities A and p and defermine the
exact value of }.(}/?f) for n = 2p, 3p (p prime >3) and pq (p, ¢ distinct primes
both =1 (mod 4)). In a later paper we give all the solutions of (IT) with k
minimal (i.e. k = A(]/ri)) for 11=2p, 3p (p prime =3) and pg (p, ¢ distinct
primes both =1 (mod 4)).
For nn=0 let

alyn)
(1.1} V= > e

=
be an expression for ¥n as a rational linear combination of roots of unity
involving the least number w(fn) of terms. Write u for u(Yn). If S is a
rational linear combination of roots of unity then we denote by |S| the
number of terms in S. We shall use the following expression for ¥'n as the
Gauss sum:
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Zm o if n=1(mod4), =c2in
W(miod 1
o o ! h(n%(:i ) o if n=3(mod4), I=eis
(T = . (&= 0f o =2m with m=[(mod 4)
(mod m
. )(—5““ n—y®) if n=2m with m=3(mod4)
Afmod m

where = CQ.—:E‘m' 7N = 28,
Following Coxway and joxes [1] we say that two roots of unity =, g
are cquivalent if o(x/8) is square-free. We have the following

Lemma {. fn (L), for no j, can the order by = o(3;) be divisible by an
add square factor. Moreover

2%, if n=2(mod 4).
22b; if n=3(mod 4),
440, if n=i(mod4).

indeed if n=1(mod 4) we can muke b; odd by changing 1, to — 2, (if necessary).
Proor. Equate the expressions n (1.1) and (1.2) tor {2 and split into

cquivalence classes. Theorem | of [1] then gives

Ayn) e
.o el L F — h
2 ;5 Z =0 if n=1{mod4)
j—=1 himod 1)
:Ir'ml
a(¥n) .
e
2. e =
i=1
Iy~
But in (1.1} the sum was mininial ence each J;-~ 1, f.e. 0(J;) is square-
free as required.

Similarly if #=3 (mod 4) one gets the relation
d¥n) ,
> Cpap=Ttn
=1
N
and result again foilows. For i1 even we get the relation
w¥n)
Yl = Vet
=
sj~mor 53

and resuif follows as above.



ON EXPRESSING OF A QUADRATIC [RRATIONAL 43

Lemma 2. In (1.1} for an odd prime q if gin then g{b; (the order o(L;) of
£;) Jor any J.

PrOOF. Write J, = ;-7 where g = €224 and y; is a root of unity whose
order is not a multiple of ¢ (i.e. ¢; =0, 1, ..., g—1). This is certainly possible
for we may take ¢; = 0, ; = J; if ¢1b;, otherwise write b; = ¢d; {(¢7d;) and

then 1 = xq+ 'I-’d glvmg 5} — ez—uaf,fb} (Sily) — E_,:![ﬂ: (aq{—ydﬂ;b}, — ez-na x;’dj
- eIy = . nJ' as required. Now by renammg the I; we may suppose
without loss of generality that gfb; for j=1,2, ..., r and we have to prove

that r = pVn (= p say). 5ub%t1tut1ng for the &, int (1.1) gives
Mt TG Ty 0 b oLt = Vn=S§

¥

where 8 is given by (1.2). On collecting various coefficients in powers of o
the above becomes Sp+8, p+... +8,, 071 =S.
Then by lemma {1 of [ 1] we have the following relations:

S““3281=83= "‘:Sq—]

It follows that S,—8, =S, ie. S§,—8, =Vn. But unless 8, =8, = ... =
=8, = 0 we see that §,—3§; has lesser number of terms in it than §,+
+SI o+ ... +Sq__, p¥ 1 has and this is a contradiction to the minimality of
. Hence 8, = 8;,= ... —1=0. But 5§, =S5, 50 §;=0 for j=1,2

.., g—1. Thus S =8 and we get r =y as rtqmred

RemarK. Lemmas [ and 2 combined essentiaily tell us that one need
not look beyond the field Q{e?*¥/¥"} to obtain a minimal representation for
¥ r (1t square-free).

The two temmas above immediately imply our first result viz.

THEGREM .
- + 02 i is an odd prime
wypy = {7 T ety
2 if p=2
ProoF. Since Y2 is itself not a rational multiple of a root of unity but

can be written as a rational Jinear combination of two roots of unity: ¥2 =
= 2 cosmfd = 2e2iA 4 2e—=iM it follows that p(}/Z) =2.

Let p* = (— 1P~ 2 p and write ¥V p* = Z ¢; 5, in the minimal way.

i=
By lemmas 1 and 2 o(;) = p or 1 for all § (where we change 8 to —Z; if
necessary and absorb the minus sign in a;). It follows that each J; is a power

of & = e2=i/P. But the only relations giving ¥ p* in this way dre

Vpe =142 D1 (Re AL+ .. +077Y)
Ripy=-1

ond in this the least number of terms occurs on the right hand side if and
anly if A=0 or —2, the number then being (p+ [}/2 as required.
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§ 2. Bounds for () n) and u(¥2n), n odd

The object of this section is the following
THEOREM 2. Let n=p, p, ... p, be odd where py<p,< ...<=p,, then

Ak I T S G L L Y

2 2 2 2 2 2
(ii) p(Y2n) = 2u(Y n).
We first prove the following

Lemma 3. Let 1 = pm (pfm} where p is an odd prime, m is odd then

'D+I _==-.u, _.mzﬁt E
) w(Ym) = (Y pm) 2!0/ )

Proor. The left hand inequality is trivial: Write ¥p and ¥m in a
minimal way involving u(¥p) = (p+1)/2 and u(yYm) terms respectively.
Multiplying we get an expression for ¥ pm involving p;f—l--y(}/}ié) terms.

This gives ‘.r_a(lfp_m)sii:—l---‘u(l/;ﬁ) as required.

~ yom)

Now write ]/;fmi = Z £ Cj in the minimal way. Here write
i=1

| Vp-Ym if p=1(mod4),

Vpm - S0
| —iy—p-¥m if p=3(mod4).
Then write }m as a rational linear combination, S say, of roots of unity
involving the least possible number of terms, Then

| S(l+2(m‘§__1;'”) if p=1(mod4).

|—55(1+2 > F) if p=3(mod4). (where ¥ = eZiipy
(R:p)—1

Vpm =

Now since S is minimal both § and —iS involve w(¥m) terms. Write S* to
mean S if p=1(mod 4) and —iS if p=3(mod 4), Then

A )
Vom= S ¢,=8+ 3 28*:k,
j—1 {(Ripy=1

Now write

#(Vpm) .
CJC} as Su+sl;+..A+5p_1C‘oml‘
i=1
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where all the S; involve roots of unity whose order is prime to p (see the
proof of lemma 2). Then S;+S,{+...+8,, ! —S*+28* Z CR

ie (So— S*)+Z(SR ZS*)CR+ZSNCN 0, where (R{p) =1 and (N/p)
= —1. By ]emmd 1 of [1] we get So—8* =8,-28% =S5, i.e. S-Sy =
=28% §,—-Sp=—5% 5,— 8y = S*. These mlply the following relations
(D) ISgl+ISni= |5 —Snl = [|28%] = #(V@,
(i) 1So] + Skl = [So—Sg| = | =S| = x(Ym),
(ii}) |Sol + ISnl=1Se—Sul |S*| = u(Ym).
Now

b

p ) =5 15,1 =
= 1S+ IS0+ (3 1551+ 3 1w1) + (1Sa] + 3, 1901 + 3 1Sl))=
ag [p (V) + e (Vi) - -P;‘ " (ra)-*’—;-]

by (i), (ii) and (iii) above, and this = . u(¥m). This completes the proot

l\..|'C‘.'.'l

of lemma 3.

Proor oF THEOREM 2. (i) is an immediate consequence of lemma 3.
To prove (ii) we proceed as follows. Write ¥2n as a rational linear combi-
nation of roots of unity in the minimal way involving ;(¥2n) = ¢ terms:

(2.1) 3¢5, = Vi = V2¥n = S (n—n%)
=1

where 4 = ¢27i/3 and § is the expression for ¥z given in (1.2). This expression
for S involves roots of unity which are either all ~1 or all ~i. Now split
(2.1} into equivalence classes and get either

M
2, €8y =1Sn, 2 ¢lj=-87

Bj “J

" 7
2, €5y TS 2y el = S
3= &

!-\..:j

Since S = ¥ n (in value) so in either case both Z 1 and Z I are = u(¥ n).

or

Hence p=2u(} n). But since Y2n = yn (- f;‘) dnd 14 can he written as a

rational linear combination of u(} 1) roots of unity se p=2u(y 1), This com-
pletes the proof.
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§ 3. The exact value of () r1) in some special cases

THEOREM 3
(iy w(¥2p)= p+1 (p odd prime),
(i) p(Y3p) = p (p prime =3),

(iii) u ]/pq) p+I q+l {p, q primes with 3= p=q).

Proor. (i) By theoren 2, (i) «(¥2p) = 2u(¥ p) = 2((p + 1)/2) (by theo-
rem 1) = p+ 1 as required.
(ii). By theoren 2 we get
3+1 I l
=D e yE) = T

It follows that u{y3p) is either equal to p or equal to p-+ 1. We now ex-
plicitly exhibit ¥3p as a rational linear combination of roots of unity having
p terms. Let w = (—1+V —3)/2, { = ¢2//?, and let

X=—-14+ ZF 20+ 5 2wV,
(Rip)=-1 (Nip)1=—1

Now ¥ —3=2w+1 = —1-2u2 = m—n> Hence

X = X+0_X+(l—|—2 R+Z’N) %'(|+2(u)fn+§(l+2w?)CN

(by using the definition of X)
X =¥ =3(Z =20 =V -3Y(=1F "p
7 I3
(by the Gauss sum)
X - | ~¥3p i p=3(mod4),
| #3p if p=1(mod 4).
Thus

V3p = { X Tf p=3(mod 4),
—iX if p=1{mod4).
But X and —iX are both rational linear combinations of roots of unity
involving p terms. This proves (ii).
(ifi). Let o = e27i/4, 3y = ¢27¥P_Then as in the proof of lemma 3 we arrive
at the equatlon

(3.1) So+Sy04 ... +8, 10071 = §F 4 5 28%.,R
(Rigy=1
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where S* = 1 or —; times (1 2> ;;R'). Both sides of (3.1) = ¥p in

_ (RIp=1
value and as before we get the equations
(3.2) Sy—8* = 85,-28% = 8y.

Then Sp—Sy = 28*% = 2¥p in value. We see that p is represented as a
rational linear combination of roots of unity by S,—Sy and hence

(3.3) |Sel + Syl ={p+1)/2.
Case 1: |Sp|+ [Sali=(p+ )2 for all R, N.
This means that | S+ |Sy| =(p+3){2. Then by (3.2)

_ @—1yz ) -1 p+3
0 (Vpg) = 1Sul 4 3, {1Se;l+ 18w} = 1St + Ao P12
i 2 2
L4z pH3 o md3qo 3 pt et e pe iy =
= 5 ) i . . (since g=p+2) =
- Pl g+
2 2

The required result follows by the right hand inequality of theorem 2,
part (i).

Case 2: There is an Ry, N, such that |{Sg,}| + [Sn,| = (p+ 1)/2.

For thls pair (as for the others) Sp,—Sn, = 2¥ p, i.c. ¥p is represented
as a rational linear combination of roots of unity by Sg,—Su, and by the
hypothesis of case 2, this is the minimal way. So there is no common root
of unity in Sg, and Sy, (even with different coefficients) otherwise these
would be joined up into one term in Sg,— Sy, to give ¥p as a rational linear
combination of roots of unity with a smailer length than (p+ 1)/2.

Now (3.2) implies 25, = S+ Sy- In particular we have 28, = Sg,+Sw,
(in value) and then "SDHSR,,+5NO+A(1+1;+ +7P~1y for a suitable
rational number A, not merely in value but even as expressions. Now we
have scen above that all roots of unity in Sg, and S, are different, so even
if all the terms of Sg, and Sy, cancel out by A(l+n+...+57"1) there
remain p--{p+1)2 = (p— [)/2 terms in 28, since |Sg,| +{Sn,| = (p+ 1)/2.
Thus in any event |S,|=(p— F)y2 with equality if and only if all terms
in Sg,+Sw, cancel out by A(l+y+...+5” 1) Le. if and only if each
coefficient in Sg,+ Su, is equal to — A (and all roots of unity in Sg, and Sy,
are powers of ). In all other events |S,|=(p—1)/2 and so =(p+ [}/2 and
then by (3.1) we have

W(VP0) = 1S, £ > {1Sr;) + IS, 1} =
(by (3.4))

Pl g1 pel

2

o
b

=
|+
|—::.~
o+
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We look at the worst event when |§,] = (p—1)/2. We claim that

|Sk,l %0, |Sn,| =0. For if Sp, =0 then since Sp—S,=8*=Vp or i¥p
we get —S, representing ¥p or iVp, 50 |S,) =u(Y p) = (p+ 1)/2, a contradic-
tion. Similarly |Sx,| 0. Also Sg,—Sn, = 2Vp and |Sg,| + S| = (p+ 1)/2.
Thus Sr,—Sx, i5 a minimal way of representing Jp and the coefficients in
Sry Sn, are all equal to — A. But this is impossible by (i) of the following

Lemma 4. (i) Let p=3 be an odd prime. Then there are only two ways

of representing Vp us a rational linear combination of roots of unity in the
minimal way viz

Vp or i¥p=1+42 5 gR=—1-2 3 4N where n=c>ir,
(Ripy=1 (N/p)=—1

(ii) There are only threc ways of representing ¥3 (or V=3 for conven-

ience) in fthe minimal way as a rafional linear combination of roots of unify viz

V-3=w—a=1420= —1—-20% where o= i3,

(iit) there is a unique way of representing V2 as a rational linear combi-
nation of rools of wnity fn the minimal way viz

V2 = vy~ where v = 2718

Proor. Let p be an odd prime (including 3) and let p* = (= Hr V2 p
e (p1-1)/2 —
Let Vp* = Z ¢;Z; be a minimal representation of ¥p*. By lemma 1

-1
o(3;)=por f for each fi.e. the J; above are all p'" roots of unity i.e. pow-
ers of  and so any such relation is of the type
1+2 3 R4+ A(l4q+ ... +9p71),
(Rim=1

This has (p+ 1)/2 terms in it if A =0 or —2 (the two ways mentioned in
(1)). For all other values of A the number of terms is more than (p+1){2
except when p=3 and A = — 1, when the number of terms equals p—1
which equals (p+1)/2 (since p = 3). Thus only for p = 3 we get the third
way mentioned in (ii}. This proves (i) and (ii). To prove (iii} we note that
V2 = y+y~t is certainly one way. Let also V2 =1¢, 7,46 5 =y+y7! be
another way. Multiply by y and get ¢, (y S+ (y &) = 1 +p%ie say ¢ [+
+¢, {, = 1+1i. Here 1+ since o(1{i) = 4 1s not square-free. It follows that
£{ and Z5 are in the class of | and { respectively since both I and 2 can
not belong to the class of | (nor to the calss of { similarly) because then
only { would remain in the class of / and would give i = 0. Say then [~ 1,

ta . - - 1 2 = N . L — L
Gehie g =loh=horey =l aylh=iorgl=yl 6=

=y~ i =+ as required. This completes the proof of lemma 4.

To complete the proof of our theorem 3 we note that in both the rep-
resentations of ¥p given in (i) of lemma 4, the coefficients are not ali the
same. This shows that the worst case of the theorem under discussien never
actually occurs. This proves theorem 3.
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§4.7and g

We prove the following
THEOREM 4.

Q) 2 )= pn(Y My=24(F ),
(i) A(Y2p) = (p+ 1)j2 (p prime =3),
(iii) AV3p) = (p+ 1)/2 (p prime =3),

(iv) (¥ pg) = [l+ p;rl_qtl /2 (p, q primes satisfying 3<p=gq,

p=g=1(mod 4)).

Hyn)
Proor. (i) Write n = > ¢;c08 A; in the minimal way

J=1

ayn) ¢,

l}{”; = Z r;("}"-"])

=z

where (; = =¢ f which is a rational linear combination of roots of unity in-
volving "2 terlm It follows that «=2;.
#(¥n)
Now write Vn = p
i=1
g:(fn) -F'(Vn)
jugates: ]/n = Z ¢, gJ Adding these two we get Vo= Z ¢; cos A; which

J; in the minimal way. Take complex con-

i=
is a rational lult,ar combination of cosines involving u ters It follows that
7= p. This proves (i).

(i) We have iV Jp)—f-l— w(¥2p) = — 2;;(}’;)) = {p+1){2. 1f remains to

exhibit a rational linear cmnbmatton of (p+ 1)/2 cosines giving V2p.

Case 1: p=1(mod4). By the results proved in [2], (~I-+¥p)4 can
he written as a rational lincar combination of (p— 1)/4 cosines. Thus Vp=
I+4(cos & +...+cosO,_py,) and V2 =2cos/4. Muitiplying we get
V2p = 2 cos 1/4+4 [cos (@) +afd)+cos (O —zf) [+ ... +4[cos (O 1y +
+2/4)+-¢0s (O, 1y —7/4)]. 1t follows that H2py=1+(p— 12 = (p+ 12
This does case 1.

Case 2: p=3(mod 4). Let [ = ¢>i¥, 5 =218 50 that 93—?}" = iy 2. Let
X =+ +22 Ry+231 Ry = n+u7+n(}’ p=1)+7 (=¥ —p—1) (since

Z [R=y—p—1 by the Gauss sum) =V —p(p—y)=V— p(f|/2) Hence
=2p and so X = +)2p. But the definition of X already cxhibits X as a

rational linear combination of I-+(p—1)/2 cosines. It follows that i(Y2p)—
=(p+1)/2. This does case (ii).

4 ANNALES — Sectic Mathematica — Tomus XXV,
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(iii) By theorem 3, u(¥3p) = p and so A(Y3p)=p/2 (by (i)) and therc-
fore =(p+ 1)/2. [t remains to exhibit one representation of ¥3p as a rational
linear combination of (p+ 1)/2 cosines. If p=1(mod 4) we proceed exactly
as in case 1 of (i) with 3 = 2 cos /6 (instead of ¥2 = 2 cos 7,4) and get the
result. For the case p=3 (mod 4) let 7= ¢*?7, m=¢T 3 and let X = — 1+
+2X 0 iR42 D w? R Then we have shown in theorem 3 that X =

R R

= —V¥3p. On the other hand X = — [+2 3 {o SR+ @ ¥} since the set of all
R
N is equal to the set of all — R since p=23 (mod 4), and this

=—1+4+2 2> Z2cos0,
(Rim=1

say where &, = 2= (p+ 3R 3p. Thus

V3p=1—4 3 cus@,
®ipy=1

giving }/3p as a rational linear combination of (7 + B2 cosines as required.
(iv) By the results of [2], since p=¢=1 (mod 4), we have

Vi = E+4(cos Ay+ ... +¢os Ay,
Vq =14+4 (CUS )31+ e = COS )fj{q_ 1:'.'-1) .

Multiplying we get '

VPQ = 14+4{cos A+ ... 4cos Ao} H4(cos By + ... +cos B, y) +
G-t (p-1i
+8 > > cos(A;—By) tcos(A+ B,).
k=t j=1
it follows that
AV pg) =1+ (p— DA+ — 14+ (2p— 1Y4] [(g— 1)/4] =

_‘_[H,Pi_.l_. ‘Er_'],
2 2 )

On the other hand

w(Vpg)= ‘i w (¥ pg) = ; [_'”_J'_"i(‘ﬂ] - I m

2 2

say, where m is odd. Hence, being an integer

NP 1 il 1
o (¥ pg) = (m + 1)/2 — —0-[1+p+) ‘f—t]

This proves (iv).
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APPENDIX. We just wish to mention here that the proof of theorem I of
[1] appears to be erroneous as the following example shows: Let 1 = 24,
then a = 6, b = 4, o = ¢2*72% and Q2 = «® = €274 in the notation of [ 1]. Also
S, is a rational linear combination of of, w'*{, @®7, w!®7 07 W0~
(i =0, 1,2, 3). The automorphism o: &1+ 0*7! = 02 of Q(w)/Q transforms
S=8,+S5,+8,+5,t0 o(S) = §,+ 28§, + S, + 238§, A second application
of o to § gives 6%(8) = 5,4+ 5,485, +S, = § and we get nowhere if we follow
up the proof of theorem 1 of [1]. A correct proof goes as follows:

Each 7' root of unity can be written as %, O=i=b—1, O<k=a—1
and since (o =%/ ¥ = 1, o(wiw/)=a for 0=, j=b—1 (i) so @~
~at % and ef ol Hence each nth root of unity is ~ precisely one of o
(O=<i=b-1).

Now let S be a rational linear combination of the a™ roots of unity.
Write § =8,+S,+...+8S,. | (splitting into equivalence classes), where
each S; is a rational linear combination of the o/'® (0=<k<a—1). Here
W8;) = a; w! say where a;€Q(x?). Notice that [Q{w): Q(w®)] = ¢{1)g(a) = b.
1t follows that I, w, ..., w? ! are linearly independent over Q{w®). Hence

b=1
¥(S) = 0 implies >’ @;w’ = 0 which implies each a; = 0 which implies that

i=0
1{S;) == 0 for ali j. This completes the proof.
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RADICAL PROPERTIES DEFINED BY THE ABSENCE
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Previously [5], [6] we have considered radical properties of rings
defined “locally” by polynomiat identities (see also [ 13] and [20]). Observing
that the requirement that subsets satisfy identities implies the absence
of free subrings, we are led to ask when the class of rings having no free sub-
rings of some or all ranks is a radical class. This question, suitably modified,
is meaningful in more general situations, e.g. for groups. For this reason the
present investigation is carried out for universal classes which are varieties
of jmultioperator groups in the sense of HiGeins [9]. In this way not only
are rings {of various kinds} and groups (of various kinds) treated, but also,
infer ulia, algebras and modules.

The discussion in full generality (§ 1) is restricted to objects having no
free one-generator subobjects (or, equivalently, no free subobjects at all)
and some conditions are pointed cut which imply that such objects form a
radical class. It is convenient to consider at the same tine, and in the
same way, the class of objects without non-zero projective subohjects. We
also give characterizations of these classes in a number of particular in-
stances.

In § 2 we consider analogous questions for the classes

2. = {A]| A has no free subobjects of rank «}

for various cardinal numbers «, in the universal classes of all algebras over a
field, Lie algebras over a field, groups, associative rings and alternative
rings.

We note that CRamER [3] has examined boolean algebras from a vaguely
similar viewpoint.

§ 1. A multioperater group is a group G, additively written, with a set
Q of other finitary operations subject to the constraint that (0,0, ...,0)=0
for every € (2. Thus, for instance, when 2 = {.}, where . is binary and is
both left and right distributive over +, we get rings and when 2 = § we
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get groups. (Implicitly, then, we are writing groups additively, but when
we wish to single out the universal class of groups for special mention we
shall use muitiplicative notation.) Normal subohjects will be indicated by the
symbol <.

Our universat class will be a variety 7} of £2-groups generally satisfying
the following condition.

(V1) If B is a non-zero subobject of a projective object of A/, then B
contains a non-zero projective subobject.

Lemma 1.1 (V1) is implied by the condition

(V2) If Bis a nont-zero subobject of a free object of 77, then B contains
a free subobject.

Proor. If 02BC P and P is projective, then P is a retract of a free
object F, whence we can asswme that A< F. Then P contains a free {and
hence non-zero projective) subobject. ||

We mention a few examples. Associative rings satisfy (V2), since free
rings have no zero-divisors and hence non-zero one-generator subrings of
free rings are isomorphic te x Z[x], i.e. are free. In the sane way associative
algebras over any integral domain satisfy (V2). A Schreier variely is a variety
in which non-zero subobjects of free objects are free. Clearly Schreier varieties
satisfy (V2). Examples of Schreier varieties are the varieties of groups [15],
algebras (not necessarily associative) over a field [12]), [22], Lie algebras over
a field [17], [23], commutative and anticommutative algebras over a field
[18]. The class of (left, unital} modufes over a ring R is a Schreier variety
if and only if R is a (left) fir ([2] p. 47). The class of modules over a semiheredi-
tary ring R satisfies (V1) but not necessarily (V2) (e.g. when R is semi-simple
artinian).

In our universal variety 70, we consider the following classes:

®p = {A| A has no non-zero projective subohjects};
R, = {A]| A has no free subebjects}.
Prarosition 1.2, Jf 70 satisfies (V1), thent R is a rudical class.

Proor. If Ae®R,, 1< A and A/l has a projective subobject /2, then
the diagram
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can be completed commutatively, whence A has a subobject isomorphic to
P, P=0and AlTe¢®,. If f<R and if J and R{J are in 7/2p, suppose R has
a projective subobject L. 1T LN J5£0, then by (VI) LN ], and hence J, has
a non-zero projective subobject. This is impossible, so LN J —= 0. But then
L=LILN J=(L+ ) JER[]. Since R/f is in %, we have L =0, so R is
in 72,. Finally, if B is the union of a chain {B,|/¢.1} of nortal subobjects
from @, then for any projective subobject M of B we have M = yMNB,.
1

Since MM B;C B Ry, MM, has no non-zero projective subbojects. But
then, hy (VI), M0 B; =0. Hence M =0 and B is in 2, §

1t is clear that 2 is the class of objects with no one-generator free
subobjects. We want a condition which makes ;. a radical class.

ProrosiTioN L3, If 1) satisfies

(V3) Every non-zero subobject of a one-generator free object has a
free subobject,

then @, Is a radical class.

The proof is like that of Proposition 1.2. Clearly (V2) implies (V3).
However, the variety of alternative rings satisfies (V3), but not (V2); see
[ 0], [16]

ProrosirioN 1.4, If 70 satisfies (V2), then (2, = R,.

Proor. In any case, R, If (V2) is satisfied, A¢®, and P is a
projective subobject of A, then P, if not zero, being a subobject of a free
object, has a free subobject and hence A does — contradiction. Hence A is
in 2n and 2.

The following examples may help to put the feregoing results into
perspective.

ExamerLe 1.3, When 7} is the class of Z,-modules, @, contains 22,
and Z,/2Z,, hut not Z,, s0 7%, is not a radical class,

ExampLE 1.6. An aufodistributive algebra is a (not necessarily associa-
tive) algebra over the two element field satisfying the identities

x(p2y = () (x2): ()2 = () (12).

Every autodistributive algebra has the form A& B where A satisfies the
identities x(vz) = 0 = (xy)z and B satisfies x* = x (sec [T] or [[1]). The one-
generator free algebra in this case is isomorphic to

(x Z, X1 Z, XD Z, -

Both factors are in %@, so & is not closed under cxtensions and therefore is
not a radical class. In the decomposition A& B mentioned above, B actually
consists of all the idempotents and so, if non-zero, contains a copy of Z,.
Thus all algebras in 2, satisfy the identities x{)z) = 0 = (xy)z. If A has an
element a for which «® = 03247 then A contains a copy of x Z, [x]/{x* Z, [x],
and conversely. Thus we have



R3] GARDNER, B, |.

Rp={Ajg, b ceA={ab)c ~ 0 =a(be); a* =0}
= {Alae »a? =0},

This isn't closed under extensions either, as one sees by considering the
Z,-algebra spanned by {u, v} with 2 = ¢ and all other products zero.

ExamprLE L7. If R is a semi-simiple artinian ring, then in the class of
R-modules, 22,. is not a radical class while 72, = {0} is.

We turn now to an exwmination of what 72, and 7. look like for more
orthodox choices of 7.

ExampLE 1.8, When /) is a variety of rings or algebras, @ is the class
of algebraic algebras, i.e. denoting a free 7f)-algebra on one generator hy
F, we have

Ry ={AcTNac A= JaueF, a=0, with «(a) = 0}.

To see this, we just observe that the subalgebra generated by a is isomorphic
to F/H{a), where I{a) = {fcF1p(@) =0}. If ac AeR,, then F[i(a) is not
free, so I(a)<0. Conversely, if A472,, then some b¢ A generates a free sub-
algebra 7b,. But there is an isomorphism ‘& ~F given by b:—x (a genera-
tor of F). If geI(h), then & = () 1— B(x) = 3. Hence /(b) = 0 and A is not
algebraic.

ExampLE 1.9. When 7 is the class of all groups, we have
;. = By = {G|pe G 0(g) is finite},

since helonging to 2, (= ¥, since we’re dealing with a Schreier variety) is
cquivalent to having ne rank-one free subgreup, i.e. no infinite cyclic sub-
groug.

ExameLe [.10. Let R be a ring (associative) with identity such that the
class of (left, unital) R-modules satisfies (V). Then 72, is a radical class. Let
L bealeflideal of R such that R/Le@2,. 1f Mis aleftideal of Rand ML =
={), then R!L contains a copy, (M+ L)L, of M. Since M is contained in
the projective module R, either M = Q or M has a non-zero projective sub-
module. The (atter alternative is incompatible with the membership of R/L
in2p, 50 M = 0. Thus L is essential. If, conversely, L is an essential left ide-
al, then any projective submodule of R/L lifts back to a projective left ideal
not intersecting L, so is zero. Thus R/L is in 72,. This proves that 72, is the
Goldic torsion class and R is non-singular (sce, e.g., [8]). Int particular for
abelian groups, we get ordinary torsion {more obviously).

In general, the @p-semi-simpie objects are those in which every non-
zero normal subobject has a non-zero prejective subebject. Semi-simple clas-
ses of modules in which every non-zero module has a non-zere projective
submodule have been studied by TepLy [21].

We note that even in such a well-behaved universal variety as the
class of abelian groups, the class of objects without non-zero injective
homomorphic images is not a semi-simple class, so there seems to be littie
prospect for dualizing the results of this section.
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§ 2. For each cardinal number =, let
= {A€T| A has no free subobject of rank «} .

Clearly 2, <2, whenever z = 3. In this section we shall consider two ques-
tions:

(1) When is 72, a radical class?

(2) When is @, = @,;?

Note that 72, = ®,. as defined in § 1.
LEmMaA 2.1 Lef 70 be the variefy of (i) all algebras over a field, (ii) Liv

algebras over a field or (iii) groups.
If Fis a frec object of infinite rank and O= 1< F, thew 1= F,

Proor. (i) Let {x;j2¢.1} be a free set of generators for F, {y.|v€@'} a
free set for 7. Suppose [T < 1.1}, Let

Ao = {2€4]x; is involved in the representation of some w.}.

Then clearly |.1,] = &, || <|.1], so we can choose 2¢€.\A,. But Xy
for each y, so each x, y, can be expressed in terms of the x; for A€ A, while
X0 mvolveq x; as “ell as various x; with A¢ 1, This is impossible, so
fI‘[ = |.1]| and TF.

(i) Now let {x;|/€.1} be a free generating set for a frec Lie algebra F,
{y.lyes) afree gencrating set for a non-zero ideal 1. Let ,, 7. be defined as
in (i). Let F, be the free associative algebra on {x;}/€.1}, F, the Lie algebra
on F, defincd by commutation. Thenr we have i Immmnorphmm f:F -F,
given by f(x;)=x;v 4 In F, we have x; ). expressed in terms of the x;,
#€dy 50 in F, we have x;3.—v..x; expressed in terms of these x;. This is
impossible.

(iii) Proceed as above, but consider x; v, x; " |l

(Case (iii) of Lemma 2.1 was noted by bHMLL KIX [19]. We are grateful
to Fraxk Harris for explaining (iii) and thereby suggesting (i) and (ii}).)

Recall that an object A is nnequivocal [4] if 2(A) = A or 0 for every
radical class %.

THEOREM 2.2. Free ulgebras of infinite rank, free Lie algebras and free
aroups are unegquivocal.

Proor. Lemwma 2.1 takes care of this infinite rank cases: if F is free and
R is a radical class, then R(F) = O or F=R(F)eR. The finite rank case for
groups was proved by SHMEL'KIN [ [9]. Consider, thcreforc a free Lie algebra
F, of finite rank 1 and a radical class /2. If 05 f’;Q(F) £, then by Theorem
3'of BAUMSLAG [1], ®(F,) is not finitely generated so its rank is ®,. But
then F, is a homomorphic image of R(F,), so F,¢® — contradiction. Thus
F, is unequivocal. ||

We now show that for the three varieties we have been discussing, the
classes 72, are always radical classes.
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THEOREM 2.3. () In the varicty of ali m‘gcbms over a field, each 72, is a
radical class and wc have (R, =R, =8, = =Ry R =R if =<3 and
x 18 fnfinife.

(i) In the variety of all Lie at'{:dirua gver a field, euch 72, is a radical class

and R =R R, =R, = =Wy R, By if a<p wimd « is infinite.
(||1) in H.w l'ar.fen' nf uH ar rmps each C(J is a radical cluss and R, =
=R - Ry =0y = ... =Wyt B, Ry if z=<p and o Is infinite.

Proor. (i): By Proposition 1.3, @, =72, is a radical class. KurosH
([12], p- 244) has shown that a free algebra on one generator has a subaigebra
that is freely generated by a sct of cardinality 8,. Thus @y, S@,. 1 now «
is infinite, then clearly 7, is homomorphically closed (cf ﬂlt. proof of
P:t)pmltlon [.2). If 71 A and both ! and A;{ are in 2., suppose £, is a
free subalgebra of A with rank «. Then E,M [ is a free ideal of [ and since
Iisin 72, £, 1 can’t have rank ». By Lemma 2.4, F,N{ =10. But then

Fo= FUEND(F+ DT Al

while Aff is in 2, — contradiction. Thus A is in /2,. Finally, if R is a unien
of a chain {J;]2€.1} of @, — ideals, then for any frec subalgebra F, of rank
z, we have [,NF < f:€%, for each 7, so by Lemma 2.1, /,NFE =0 for
cach 7. But this means that

b= (_"_J.J"')HF* = l{(j;ﬂf—;) - 0.

Again we have a contradiction, so R is in 2, and 2, is a radical class.

For free algebras of infinite rank, the rank and (vector space) dimension
are cqual. Thus if F, i3 a free algebra of infinite rank =z, then F, has no sub-
space of dimension g=x and hence no free subalgebra of rank g=«. Thus
IC;E'/)Q;;\FL),;.

(ii): By Proposition 1.3, @ = %, is a radical class. [n a one-generator
frec Lie algebra F, all products are zero, so £ €R,\2,.

Let £ be a hee Lie algebra of rank 2. Then Fr=0and F,=F}, so by
[1], Theorem 3, F2 has infinite rank. 1t follows that @y, C®,. The rest of
the proof is like that of (i).

(iii}: By Proposition L.3, @, = &, is a radical class. Free groups of rank
| are abelian, and hence in 72, \(,Q‘ Free groups nf rank 2 have infinite-rank
free subgmupb (see, e.g. [14], p. 15D), so Ky, .., Observing that for free
groups of infinite rank, order and rank arc Lqudl we can now complete the
proof by arguments analogous to those used for (i).

We couclude with a discussion of some of the classes 2, for associative
and alternative rings.

TuEOREM 2.4. For assaciative rings, 2, and ®, ure radical classes and
(Qr_“—(z?l 1%2:@3: e :(JQN".
Proor. By Proposition 1.3, &, = 7%, is a radical class. Since one-gen-

erator free rings are commutative and therefore do not have free subrings
with rank greater than one, we have @, < 7@,. Let £ be free on {x, y}. Then
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as noted by Conx ([2], p. 33) for associative algebras over a field, {x, xy, x)*,
Xy, ...} is a free generating set. Thus F, has free subrings of infinite rank
and so B, = Ly,

By a familiar argument, %, = 2y, is homomorphically ciosed. If 1< A
add 2, contains I and Afl, suppose A has a free subring F of rank §,.
If /N 1=0, choose a non-zero element u m FMI. Then uF=Fu, so we
can choose veF such that wv=rva. Then 2y =uz so by a result of CoHn
([2], p. 244), the non-commuting elements &, 11 generate a free subring of 1.
This contradicts our assumpiion that 7 is in %4,. Hence FN T = 0. But then
I is isomorphic to a subring of Ajfer?2, — again a contradiction. Thus A
is in 2, If now R is the union of a chain {fi[2€.1} of @, — ideals, any
rank — R, free subring /¥ of R is the union of the ideals 7N J;, and each
F Ji has no free subrings of rank 2. Let FN [, =0. If u¢ FN J,, and =0,
then as above, there is an element v in 7 such that mvs< ey, and then FN J;,
contains the free subring generated by {u, uv}. This means that FNJji=0
for each J, which is impossible, so R has no free subrings of rank §,, i.e. R
is in @y, = fL)“ |

Propositiox 2.5. [ auy variely of rings, 2, is the class of rings A such
Hat for every a, €A fhere is a4 non-zero polvnomial « = ax, v) in the free
rinig F, on {x, v} for which =(a, 0y =0

Proor. (Cf. Example 1.8.) For a, b A, let
I(a, b) = {fc £|B(a, b) = 0}

There is a surjective homomorphism F, ~{a, 0y (the subring genterated by
a and &) given by »{x, y)i—y(a, b). ¥ Aer@, then {q, &, is not isomorphic
to 5, so I{u, 0)=0. Conversely, if I(a, 8}=0 for every u, b, then no {u, b}
can be a free generating set, so A is in 2,. §

Since free alternative rings on two generators are assoclative, by in-
voking the transfer theorem (Theorem 3.1) of 6, we get

CoroLLARY 2.6. For alternative rings, @, is a radical class. |

Our final result gives some further information about alternative rings.

TreorReEm 2.7. For alfernative rings, 2,5 @,; R, and @, are rudical
classes, while 2,10, ..., Ry, arc not. In par ncuhu P 20,

Proor. Proposition 1.3 and Corollary 2.6 take care of 72, and %,
("R, =, as in the associative case). Humm and KLEINFELD [10] have
shown that free allernative rings of rank =4 contain nilpotent ideals.
Subsequently SHEsTakov [16] has shown that for such free rings F the
Jacobson radical J(F) is nil and F;J(F) has no nilpotent elements. Thus
J(F) has no free subrings, while any free subring of FfJ(F) must have rank
=3, and therefore Fe®, c2,,. Taking 4,5, ..., &, as the rank of F, we sec
that 2,,2;, .. ., g, are not closed under extensions. ||

There is a widely-held view (supported by a great deal of evidence) that
radical theory is “the same” for alternative as for associative rings. Theorem
2.7 provides a marginal counterexampie.
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INVARIANCE OF MULTIPLICITY (VIELFALT)
IN WALSH FOURIER ANALYSIS

By

H. GRUBER
Joehannes Kepler Universitit, Linz

{ Received Golober 28, 1975 )

L. Introduction, Originally the concept of multiplicity (Vielfalt) was
used to describe the fact that many of the Walsh Fourier coefficients of
polynoemials are equal to zere. More precisely, P. WEIss [5] showed that
polynomials of degree n have multiplicity n in every Walsh Fourier system
defined by a bounded sequence. The concept of multiplicity itself is derived
from the construction of Walsh functions by products of Rademacher fune-
tions.

In H. GrRuBER [3], [4] the background of these facts was analized fur-
ther and it was proved that for functions having multiplicity n certain n’th
differences arc constant. With this result it was not only possible to formu-
late the main result of P. WEISS [3] in a more general manner, but alse to
discuss the question whether there are other functions in L0, 1], besides the
polynomials, having the same multiplicity in all Walsh Fourier systems.

By solving these difference equations simultancously tfor all Walsh
Fourier systems we show in this paper that the polynomiais are, in fact,
the only functions whose multiplicities are independent of the Walsh Fourier
system. In fact, we do not need alt Walsh Fourier systems for our proof.

A very detailed treatment of the discussions of this paper can be found
in H. GrusgEr [3].

2. Preliminary definitions, the theorem on differences, Lct
Foi=(a(0), «(I), ...},
G = (8(0), p(l), ...), ...

be sequences of positive integers greater than one. Then, to F, we have the
products

Q) A O):=1 Ap(R):=a®a(l) ... xk—1), k=12 ...,

()
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and a system ¥ of (generalized) Walsh functions g, and of {generalized)
Rademacher functions ¢, ., m, n =10, [, ..., as defined in H. Grusgr [4].

Additionally we construct the subsequences

) F:= (cc(!), aff + 1), ) =01, ...,
30 that

Ap(s+8)
4 Ap (8) = -0, 5t =0,1, ...,
(4) (A8 A0

Te every subsequence of a sequence we are able to define a corresponding
Walsh Fourier system.

For the multiplicity V.. (f) of a function f¢ L1 [0, | ] we also use the same
definition as in H. GruseRr [4], but we emphasize that, in general, the mul-
tiplicity of f depends on the Walsh Fourier system.

To formulate the theorem on differences of H. Grusger [4], we use a
slight (and trivial) maodification of the detinition of the n-tuples Q%, namely

b= QIQ = (G Gy - -, 1)ENY, Q=g =gu< ... =g, = 1},
(5) p=1,2 ...,807=p

and
0:=0, n=0,1....

Furtherinore, to every s-tuple Qe@Qy, v =0, §, ..., n=7r, and I we define a
set of n-tuples

BaQ):= PP =Py, pa. -, PIEN", 1=p=0(g,— 1)},
(6) v=1,2...,
P.(Qy:=0 for r=0.
Now, with these preliminaries, we can state {H. GRUBER [4])

THEOREM 1. For every function fe L1[0, 1], for every sequence F and for
evervy, v =0,1, ..., fhas maximal multipticity v with respect to the svstem W,
if and only if

v, dz=v, vy, vPcP.A(Q)

A M P Py ] N
e . LAY =K(m, QP 0
Ap(g)  Ap(g) Ar{g.)
[
Jor almest ail x¢)0, ———] . k{m,Q, P, NHec)
Ap ()
i.e. the differences do not depend on x.
''We use A {g,, ..., 4.} g{x) iustead of the more usual notation A ... 1 g{x) for

an r-fold difference over g.
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3. Invariance of multiplicity. 3.1 Functions having the same multiplicity
for all Walsh Fourier systems: We shall now formulate our theorem and,
after estahlishing some auxiliary results in 3.2, give the proof in 3.3.

THEOREM 2. The only functions in LY [0, L) which have the same multi-
plicity it for alt Walsh Fourier systems are the polynomials of degree n, neN.2

3.2 Some auxiliary results: Firstly, we give a short lemmma for complex
valued functions which are almost everywhere periodic up to constants &,
and &, with respect to the periods o, and p, in the intervals [a,, &), [a,, 8,)
respectively. We conclude that such a function is also periodic in an addi-
tional interval. More precisely:

Lemma 1. For
dy<by, ay<b,, |0y >0,>0
{"-]l (o) () = &;, xefa, b)) and - o) f(xX) =k, xe[ay, b)}=
=1 (0,)f(X) = k,, x€[max{n;, a,}+o,, min{b,, b, — o} +g,).

We use this lennima to show that the difference equations of Theorem { for
multiplicity 1 hold also on some additional intervals. For this purpose we
establish Letima 2 below, which we state in a stightly more general manner
for later applications.

Lemma 2. Let £ be a sequence as in (1), fe L0, I{ and & a positive real
number. Then we have

{vngl. .11[— J’——Jf(x) = k@ p, ) 1=p=a(n—1),
Ag (D)

xE[{). g 5]}=>
Ap (1)
= 1. P =k " =p=o —
:{Vu_ 1. | [A,,-(u) ]f(x) k(n.p, ), l=p=aln—1),

.\.‘E[-----——t e = | e — b’] , =01, .. A (n—1)— l}.
Apn=1)  Ap(n—=-1) Ap(n)
Proor: For every ¢ there ¢xists a representation
(7) fmpra(ly.ooa(u—Ddipe(@). .. an—1+... +p,,
O=p=ea(i—-1), =12 ...,0n-1.
The case =0 is trivial. Let
t=pialiy. . a(n—=1}+pali+B) .. aln—1}+ ... +p,.
ie{l, 2, ...,n}, p;=0,

* Since we shall deal with L' functions, this and following statemenis are to be
undersiood it the L'-sense i.c. almost everywhere.
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and
U=t—pa@y...z2(n-1).

We suppose that the result has been proved for ¢ and show that it then
holtds for t. But with Lemma 1 this follows immediately from the induction
liypothesis and the fact that there exists an { with

A .pf’i(i)_'.:i(”__Q] ) = [_Pf_' ] ) = (i
(8) A, (1) J(x) 2,00 f&y =k p 0,

I N
0w p,<oli—1), xglo, Y
Ap(l}
Applying Lemma 2 to the special case of multiplicity Iin Theorem I, we get
CommeENT [. A function fc L0, 1] has multiplicity 1 with respect to the
Walsh Fourier system ¥, if and only if

v, =12 ..., vp, l=p-an-1I)

ol P .
. [A,..(n) ]f () =k, p, 1),

XE[- f ) __,,f____....!. L ] f=0,1,.. A, (n—1—-1,
Ag(n—=1) Apg(m—-1) Ap{m

L, p.eC.
In Comment 1 we have simplified the representation of the difference equa-

tions of Theorem | in an appropriate manner.

In the proof of Theorem 2 we use very special systems of Walsh func-
tions and combine their specific properties to resolve our question. Thus we
need an additionat lemma to expand the domains of validity of difference
conditions:

Lemma 3. For felLl JO, 1], for all #, n-=1,2, .. and for 3=d=
= 1min —l . ——1—
48 3.0

] ) ! { I
{Jl [ 2me('\) - I‘Lm‘ * G [--2-;::-- -l ! :)m-- l- + é;rr__é} !

kl.mECs IZO, l! "-!2”‘ -1_11 = 1!2! ....lIlZiX{4, ”}
and
ZJt [%] f(\) = k::,fs :\:6[0, %_'bJ ' "“‘_'.IEC‘ I = 1‘2}:
a

1 1
{A‘ [%]f(x) = Icl_,,----,}—”—_. xe[[),] o —é] s R = 2!{1‘1}.
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Proor: First let n= 4. Then we have the conditions

1 t 1
9y M|—|f(x) =4k ,, x€|]—, —4+—-6}, t=0,1,...,7,
O (5w = k. <16
and with a slight modification
1) [1 2

10 AV — —|f(x Koy, X€}—, ——8
(10) §J700 =~ x| To9)
and

( 2 [ -
{11) B —=|f(x} = —ky,,, xE€ é, 1—5].

With Lemma 1 we get from (9) and (10) that the difference conditions

{9) are also valid in the intervals

and,

6 1T 1 5 e [BL L )
16 3 16 3 | 16 3 16 3
sitmilarly, by (11} instead of (10), that they are valid in
122 18 2 ) g [M2 052 )
16 3 16 3 16 3 16 3

Together with the original domain of validity of (9) these intervals cover
[0, —I%] We may now use (10) and (11) again and the hypotheses of the

lemma for n = 1,2 to prove the validity of (9) in the entire domain. If we
finally put

(i2)

4k1.4 z:kl,o ]

we se¢ that the conclusion of Lemma 3 holds for n = 4. The case n<4 fol-
lows then by simple addition.

(13)

Now our induction hypothesis is

f[x+—] —f{x) = 21 1,0 .E[Ol——;———b]

ti=4, and we have

(14)

s

t f 1
] f(\)-—-»‘nlﬂ 19 x€[2n , on 'i'F‘_(S]’

t=0,1,...,2°— 1. For any t we subtract now (14) from (13) and get

(15)

2n-r1 2r|

i
f[JH- ] [x+ : ]=—kl,u—k1,n”,

&5 ANNALES — Seclio Matheratica — Tomus XXV,
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xg[ r . __'T_+__._.].__§],
2n 2n el
which may also be wriften as
1

2!1'7 1

1
]“f(-‘f) = —2;‘ Kyo—Ki ey

! | f+1
YE [_ + - ¥ + - 6] -
on 2Tl on
By shifting the domains of validity as in Lemma 1 with (10) and (11),

one sees that there are non-trivial intervals, in which the conditions of (i4)
and (16) both hold. We conclude that

(16) f[x+

- |
(7 Ky nin = on Kio=Kney-

Now, by careful use of Lemma 1, we can complete the proof.

3.3 Proor of THeorREM 2. The fact that a polynomial of degree n has
multiplicity n has already been mentioned; sece H. GRUBER [4]).

Furthermore, it is trivial that the constants are the only functions
having multiplicity zero in any Walsh Fourier system.

To treat the case of multiplicity one we choose the sequences F =
=(2,2,2,..)yand G=(3,2,2,...), and postulate that Jfell [0, 1T has
multiplicity one with respect to the Walsit Fourier systems defined by these
two sequences. By Theorem | respectively Comment 1 it follows that for f
the hypotheses of Lemma 3 with § =: 0 hold, and therefore:

(18) f[x +-r—2];l]—f(x) - k.T)':, xE[O,l - ;] KeC, n=1,2, ...
By addition of a finite number of equations (18) we get
(19) JE+dX)—f(x) = k- 1x,
for x¢[0,1), Ax a positive dyadic rational with x+ Ax¢[0,1).
Hence for
(20) F() = fR)—k-x
we have the equation
(21} FFx+A4)—-f*x)=0.
By AczEL [1), respectively the literature cited there, it follows that
(22) f¥=¢, ccC.

For a thorough discussion, see also H. Gruser [3]. This establishes our
result.
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Now let f¢L1[0,1] be of multiplicity v4-1 in every Walsh Fourier sys-
tem. By Theorem 1 we have:

For any sequence F
v, nz=zvel, vQe@ul, vPeP(Q)

(23) Av[rf’(zq: 9 F’(ﬁqﬁ.’). A:’;{;‘r‘“)][dl[ A0 Jf( )]

=k{n, Q, P, 1), .\'E[O, A_I—)]’ k(n,Q,P, HecC.

F (1

Here we have used the commutativity of difference operations to
modify the representation of the theorem. We now substitute in (23} the
subsequences £, r=1,2, ..., of F as described in (3) to get:

For any sequence £, for all r= 1,2, ... and for all I ss<af{r—-1)

ym=v, VQeQ, VPP (Q)

(24) A’[;ﬁj@‘ W)J [A [Ap(r)]f ¢ )]

=k[m,Q,P,A1[

o)) oo AF(r)fl@F,(m)]'

These are now exactly the conditions that the functions A‘[ ( )] />
, ¥

in the interval [0, ——l
Ap(r)
Fourier systems defined by the sequences F,.
As F ranges over all sequences, so does F.. Therefore, our induction
hypothesis is that these first differences of f are polynomials of degree n
in x. By Acziw [2] it follows that:

], have multiplicity v with respect to the Walsh

For all sequences £, for all r = 1,2, ... and for all i =s<a(r—1)
(25) by, Ry, ) [../ll 8 ]f(x)] =k(s,r, ) [T H.
Ap(r) il
in
0= Sk (h=0)
=X = — i !'3 .
Ap(ry S

Once more we choose special sequences F; firstly we take those with the
first r members equal to two (r= 1,2, ...), and one whose first term is
three, Then, from (23) we get

(26) Ay, .. ,)[41[ ]f(x)]u,{(l r ) ]]h

b*
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1 4
=N — — : "= 3
0=x o zlhr. r=12....
< i=

and

&) ey, . .,!:1,)[.1' [ g}f(x)} = i (p, L. f) [[ n,

} v
O=x=——54h, p=12722.
3 ,—Z‘l '

Let

(29) fari= 0, by, o )]

By interchanging the difference operations in (26) and (27), using (28)
and applying Lemima 2 followed by Lemma 3, we get

(29) DMCES Oy 2

2n il

] ¥
: . _~N i - 1.9
.\6[0,! o .,l_ll.-"r‘ ., n .2, ...,
2 s
for small #..

Ju is an integrable function, and so we can conclude as above that fj,

is a polynomial of degree one in x, Le.

(30) Jax) = K (f)-x- [} Bk (o), ,\'E[O,I *Z n,,J,

=1

or

G )P = KO TT A .\'E[(},l - Zl nf].

i=1 i—1

The most general integrable solutions of (31) are the polynomials of
degree v+ 1, as may Dbee scen by successive separation of powers of x, for
example. Sce also Aczi. [2].
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AN APPLICATION OF THE METHOD OF MONOTONE
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PROBLEMS IN UNBOUNDED DOMAINS
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The purpose of this paper is to deal with the non-linear clliptic problem

L(x,Dy()= 3 (-~ DDA (x, Dva) = h(x), [v]=m:

te|z=m

Do =0, |oj=m—1

in an unbounded domain. In the first part of this paper it will be shown that
under certain conditions the problemt has a unique solution. imposing some
other conditions in the second part, it will be proved that the problem has at
least one solution. An analogous problem has been trecated for bounded
domains in [1] and we shall give a gegeralization for unbounded domains
with a similar treatment.

Notice that in [2], F. E. BRowDER considered a similar problem. In
otir work some conditions on the differential operator are more general than
in [2]. Non-linear elliptic problems in bounded doemains were considered in
some works before e.g. in [3]—[9].

The notations and symbols in this paper were generally used in [1].
In solving this problem, the method of monotone operators will be used.
As applications, two examples satisfying the main theorem of the first part
and an example for the second part, will be given.

§. 1. Let G be an unbounded domain in the real n-dimensional Euclidean
space R7. Consider the non-linear elliptic problem (in this paper we use the
notation A, (x, Dvu) for the operator

) il u
A lx, ”,_Q_[.{_ L-. _(’)_ i

Dy
A . — s
X, f')xﬂ a x5

Iyl =m)

(1) L{x,D)(u) = 2 (=D D=Ax, Dvu) = (x), |yj=m;

jx[z=m
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(2 Drulr =0, Jo|=m—1

Tidbret .y
D.‘b: _() T ]
AXVAXE X
I' is the boundary of G and L{x, D) satisfies the following conditions:
(1 A, (x, 5 are defined for all x¢G and for all ;.eR™ A,(x, &) are
continuous in x and . and satisfy the estimation:

3) A =K (2 1517 4 g (e 5)), ¥ la]=m:

where p>1, K=0 arc constans and ¢ is a measurable function such that

(4) iiu||’;,g, =0 implies that f[g(x, Drdy=c,,
W P €]

¢, ¢, are constans and p, p” are the usual conjugates with ]---+—-l— =1l
p
Here Wi (G) is the completion of the space C™(G) of continuous func-

tions 1 defined on G with continuous derivates up to order m such that the
1naGrim

(5) iivf|wr:i(r) [f ID: l’ipdr]

al=zm

is finite. Wi (G) is' the completlon of the space C* (G) of continuous func-

tions defined on ¢ with compact support contained in ¢ and continuous
derivatives up to order m and the norm on it is defined by (5).

(I1T) Condition of strong etlipticity:
For all u, veW" (G) the following inequality is fulfilled:

(6) Re{L{x, DY (u)—L(x, D)(v), u—1v)z=
= TZ Re/A,(x, Dvu)— A, (x, D¥v), D*(t —v))s=
{x|=m
- _ull?
SR g
wherte
(7) L DY) vy = S [ Al Dra) Dvdx.
v zmm O

! Further -- owing to typographical reasons — this expression has in index the fol-
lowing form: W7 {eg
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Let us mention that in the following examples condition (4) is fulfilled:
a} If g(x, &) is a function of x only where g€ LF'(G).

b) UF g(x, 5) = @x)+h(s) where geL7 (G) and [ |W(D¥w)|” dx=c,
G

<6 eg |A(g) =c|e]e and op” = p.
Ly (O
pP—ap

Let X be a reflexive separable Banach space, X* its conjugate space,
A: X -~ X* a (non-linear) operator.

provided that «€W™ (G), |iu||”m @
P
e} If glx, 5) = g(x)- (s, where [z =clg,le and g(x)el

DeriniTioN 1. A is said to be a monotone operator if it satisfies
(3) (A — Auy, 4 — 1y =0 7 1y, i, € D{A).

DerFiniTioN 2. A is calied a strictly monotone operator if besides (8)
it satisfies the following condition:

(9) (A — Aty 4, —u,,=0 iff u,=u,.
DeriNITION 3. A is said to be a coercive operator if it satisfies

. Re {Aun, u;
(10) lim 222 = e,
[fe}] = + \zzl)
ue DAY

Tueorem . If conditions (1) and (11) are fulfilied, then (i) L(x, D) (1)
definted Oy (7) Is « conjugule lnear continupus functional an Wit (G).

(iiy L(x, D): W () —~W,,»(G) is bounded and confinuous in finite di-
mensioin.

(iily L{x, D) is striclty monetone and coercive,

Proor. It is easy to check the conjugate linearity of L{x, D} («) and
hence we show its continuity only.
From (7) applying Halder's inequality we obtain

(11) L DY, = > [j AL {x, Dru)|? d‘t] [f|D* [f’dr]

1zl =m

Furthermore, from (3} and (4), we get

1
(12) /14 701 x| =1 W g 41"

provided that

fluf)?

={.
wg: (@ 1
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since u€ Wy (G} we have
1

[j [ A, (X, D‘f'u)lp’dx]yq-: o, f|a|=m
a

In view of (11), L{x, D)}(u) is a continuous functional.

Next, we prove that the operator L{x, D) is a bounded operator, i.e.
L{x, D)y maps any bounded set onto a bounded set. Let X, be a bounded
subset of Wim, (G), i.e. suppose that for any uc€ X, ||ul|=c¢, where ¢ is a con-

stant. By definition

IL (5, DY@y mgy = Sup KL (v, DY (@), w1,
P i\"“wgfp(a)-

where W™ (G) is the dual space of the space W, (G); therefore

> [1A.(x, D) D* 7 dx =

Y My ﬂliaifm(;

IL 6% D) ()l g

= sup [
! =1 [x[=
f.Vl[wg;p(G) [x[=m

Bl 1t Dzu)lp’dr] Lf |D"?[pdxF

Since {|v|| ~ 1, by use of (12} and u¢ X, we conclude that

WIH
p
| i 3
LG5 DY@y gy =*
where ¢* is a constant.
To show that L{x, D) is continuous in finite dimension, consider for ali
Uy, ty, ..., U, EW'“ (G), weW™ (G), a sequence {eN) converging to ¢®, where
PRCHES (c“‘) c“" ce s (YRR for k =0,1,2,.... We have to prove that
LG D (e uy + P+ .+ cou)), wy~
~{L(x, DY (e + e+ .+ u)), W) as ke oeo

Since lim (¢®g, + ... +c¥u,) =Py +ePu+ .. +ciPa, and A,
K oa

is continuous, we have at any fixed point that
A5 D7 (P + .+ P u )y Drw A (x5 D (P + L+ e®u)) DEw
(13) as k—eo .

On the other hand, from condition (I), we have
| Az (x, D7 (e, + ey + ..+ e ) Drwl =
=K > (lc“‘)JDful +eO DY [P g (x, DY (¢ + L el u,,)))-
= S| Drw] .
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Since {¢®) - c®), there exists a constant [=1 such that

e ={ foraill & and j.
Thus
(14) A, (x, D" (P u,+ ... +c®u)) D*w| =<
*—*Kf""‘( 2 [1Drai+ ..+ iD"Hn[]"_‘+§) |D=w,
‘ém

where the right hand side does not depend on & and it is integrable, because

szp i [ID?ulH—‘..+|D?uni]P‘1+g]|D“w|£
[aiam |y|$m

!
=¢ [eg (ud? + P + . .+ ilulle+c)]” ||“"||w{,n p(@ == -

In view of (13), {i14) from Lebesgue’s theorem it follows that L(x, D)
is a continuous operator in finite dimension.
In order to show the monotonicity of L(x, D), we begin with

C(x, Y (uy—L{x, D) (v}, u—v) =

[ 1A, (x, D7) D= @~ V) — A, (x, D7v) D*(ti — )} dx.

|z|=m G

From condition (I]), we obtain

(13) Re/L(x,Dy(t)—L(x, IHYv,u—vy=a, ju— v"png .
P

and we are led to the strict monotonicity of L{x, D).
The coercivity of L(x, D) will follow from the following

LEMmA. Suppose that conditions (1) and (11) are fulfilled, then for all
€Wy, (G), the following estimate holds:

(16) Re{L (x, D) (u), 11)03. é’ Re{A.(x, D7 u), D u)yg=

w=dy |u" -K,

m
Wo: p(6)
where 4,=>0, K =0 are constants.

PROOF OF THE LEMMA,

a) If A, {x, 0)=0for all |x|==m, then the lemma follows from condition
(11) by choosing »(x)=0 (a, = q,, K = 0).

) Suppose that there exists at least one A, (x, 0}=0. Then condition
(11) implies that

(17) 2 (A, 0, D u)— A (x, 0), D upg=a, ||u|| m

n 'ql'ﬂ
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From condition (F) we have |A,(x, 0} = Kg{x, 0). Thus
(AL (x, 0), D 1) = K (g (x, O}, |[Dxuil)y =

=K fg(x, 0y 1D | dx .
Put g(x, 0) = g, (x) and apply the following inequality:
N . P . , l n
(18) [t il gt 2 0l
i
for £=0, ja]=nn

Choosing « =0 sufficiently small, (17) implies (16), as g, € L?"((3) [sce (4)].
The proof of inequality (18) runs as follows: In the integral

fﬁ’l [ D) dx,
¢

v = DracLriG)

i
fgl 1] dx = f|sv| “Lx,
SN
g

G

put

anel

As we have
ar P’ 1 1.
ab.a____+___b,r._’., — - = ]'
por

fq,ivlfu f“’" dx - f_’(’—l "ax.

Thus we get (lb) finally,
From (16) we can see that
lim Re (I (_}____12(:1_),_::; i a;_‘_]ﬁhi’_— K' -t e

“””Wﬁt (G)—-+m HH"WB' 6) [{ag]]—= + == HII!'
P P

we get

Thus L(x, I} is coercive,

Now we shall give an algebraic formulation of condition (11}

THEOREM 2. Let p=2 and let A,(x, &) be positive and cordinuous{y
differentiable with respect to &, For all comnplex &, n,, supposc thal

(19) Re 3 Ap(X, E)Mampz=ay 2 |50 [mal®,
lx|=m fa=m
where a,=0 and A, (x, 5) = L X, &), Then

(20) ReL(x, D)) —L(x, DY), u—V)g=a,lju— 1|1f‘,31

where u, =0, which is the same as condition (11).

O
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The proof of this theorem is exactly the same as that for the bounded
case (see [I]).

THEOREM 3. The problem (1), (2) has one and onlv one solution if the
eperator L(x, DY satisfies (i), (ii) and (iii) in theorem 1.

The proof of this theorem follows imniediatly from the method of
monotene operators (see [1]).

Remarx. We can generalize the problem (1), (2) for the case when the
houndary conditions are not homogeneous:

21 Do)y = fu (X)) jwj=m—1, xXerl

where f, are such that there exist functions feWr(G) such that Deff =

= f.. By putting u—f instead of u in the solution of the problem (1), (2},
we can get a solution of the problem (1), (21) such that u—feW™ (G). We
seek for the solution wecWin(f), where Wit (f) is the set of all functions 1 =

= f+ Z such that Z¢ l,I,(G) and feW"'(G) Thus it can be proved that
probiem (1}, (21} has one and enly one solution.

We shall illustrate our considerations by same examples.
ExampLE I. Consider the differential operator

LDy = 3 (—1)D=(f(x)|D*ulr-2D=u),

x| =m

where f is a measurable function such that ¢, =f(x}=¢, >0, (¢, ¢, are con-
stants).
We show that L(x, D) satisfies conditions (I) and (FI} with p=-2.

ALy, B = f(x) [P 72
IA!(erV)J = |f(x)i|51[p I{K( Z |Er]p ])! P}l,

Ivi=m

i.e. it satisfies condition (I} with g(x, £,) =0
On the other hand,

A (X, ) = f(xX) -—(Ft |72 g

4 ...ﬁ
Thus
An(08)=(p—-Df(x}|5IP3 As=0 forall a=f§.
Hence
Re 5 Al &)min = (p=Df(ORe 3 |8l na[=

=a 2 &P Ana®,

J=|=m

where a=0, p=2, i.e. it satisfies (19). Thus L(x, D) satisfies conditions (I)
and (I1).
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For f(x) = I, we obtain that
Lix, DY) = Z (= 1 D (|Dxufr=* D).

which alse satisfies conditions (I} and (I1).
ExampLE 2. Consider the differential operator

L{x, DY(u) = Z (—DED{f(x) 1D u|P 2 D7)+

+204WW@mem,

5B

where [ is a measurable function such that ¢, =f(x)=c, =0, (c,, ¢, are con-
stants); b,,(x)€ L (G) having compact support contained in G.
We are going to prove that this operatm‘ satisfies conditions (1) and (11).

A, (\’-f) ‘_f(1)| 2L+ Z by 5o

j¥|=m

We have

LA (%, BN = [F] &P 3 fbe (0] - |5

|yf=m

i , e
={, Z |5,]P 1’1(‘__'_ Z Voo N - 151, p=2.

Bl =m Ca pl=im
Thus, our operator satisfies condition () with
] .
glx, &)= Z . (X)) 15,
Ca jyl=m

Now we need to show that this function g(x. £.) satisfies (4).
Consider

f |Bo. ()27 | DY ufP dx = f [by ()P | DY 112" dx +
G DY)

+ j | B (X} P {DY | dx
| L =1
Since p=2, hence p’=2; and we have
1, it (Dru|=1

|D?u!f”:::{
[Drue|p, if VDvYul=1.

Hence
[ 1017 107l dxs [ 1en, (1 dt [ 16w (017 [D7alPdx.
G G G

As each b,,(x)<LP’ (G} and has a compact support, we have

|Bay (X}|?"=¢  and f [bay (X dx=¢" .
G
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Thus
' F * " r P
Gj 6., ()| 107 u|? dx=c +ellln
If
Il oy =ci then [ 162 )7 107 0| dx=e;,
G
i.e. condition (4) is fulfitled.
Further, we have
Aua(x, £) = {(P DF) 15IP 7 +bgs, 2w = 8
i ” b x# f.
Thus
REIZ af (X, &) N a0 (P_])RE.‘”Z" Ifﬂ|p_2l’-"}ﬁ!°+RCJZ bup ez
13 .;_a:m w=m -f

This satisfies (19) whenever
=},

Re 'Z x3 M N3

Iﬂ =m

L(x, D) satisfies condition (1) and (I1) provided that (22} is {fuifilled
— 1)i=l D= (b, (x} D7 i1}

(22)

Al's'o for f(x) = | we obtain that
DD (|DulP2 D)+ 3 (
|z} =m

L{x, D)(u) = Z (-
18

satisfies conditions (1) and (I1) it b..(x)e L?" (G) having compact support

=

contained in G and (22) is fulfilled
§. 2. Consider the non-linear elliptic problem defined by (1), (2) in un-
bounded domain G such that L{x, D) satisfies the conditions:
(111} A,(x, t,) satisfies condition (3).
(1V) L(x, D) satisfies condition (16) for ail ueW® (G)
(V) Condition of semibounded variation of L{x, D} (u)
For all u, veW™ (G) such that [|u[|w,,. o =R I, =R {(R=0is
an arbitrary constant) it is true that
(23) Re(L(x, DYy(u)—L(x, D)(m), u—~r)5=—¢(R, ||(H-l’)wliwm '(G))

where e Cq (G)), G, G is compact set and (R, g) is a continuous function

such that for ali fixed R, ¢
lim E—(R—i:—g—)w = 0.

= +0 =z

Tueorem 4. If conditions 111, 1V, V are fulfilled, then for all he W (G)
the problem (1), (2) has at least one solution u (X} W™ (G).
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In order te prove theorem 4, we shall use the following theorem which
is similar to theorem: [. 2. of [1].

THEoREM 5. Lel X =W, (G), supposc thut the operator A: X ~X* is
coercive, bonded, contintous in fuufe dimension, and the operator A has the
semibounded variation property, ie. for every u, ve X such that ||, <R and
V|5 =R, it is true that
(24) Re!AU)—A(), u—vig=—c (Rt —r)y|

Wm— I(G))

where < Cq (G)) G, G is compact sef and c(R, 0) (5 a4 continueus non-nega-
tive function such Hmt Jor alf fixed R=0, nf-(]

fim ((R’ Seo) =0,

§-+0

=

Then for all e X* the equation A(i) = Nt has af least one sofufion.

Proor. Let v, (i = 1,2, ...) bt a system of linearly independent ele-
ments of X such that linear combinations of them are dense in X. Denote by
X, the set of linear combinations of v, v,, ..., v,. The approximate solution
u, of equation A1) =# is an element u,€ X, such that

(A(u, vy =Ly, j=L2 ..k

(25) {A{u ), v = (v, wrreX,.

The existence of u, and the inequality fju.)l=C, can be proved in the
same way as in theorem 1. 1. of [1].

In order to prove that A(u) = fi we use the condition of semibounded
variation property (24), where R=C, =[|u,]|, =0.

Since u, is bounded in Wy (G), then {u,‘} has a subsequence {ui} such
that u;, converges to u wcdkly in W (G). Since w is bounded in Wi, (G),
then y g is bounded in W (G,). We k'low that the imbedding of the space
Wes (Gy) into the space W,,mp g (G,) is compact, then there exists a subsequence
{ip 1’} of the sequence {y 1} which converges in Wi, ! (G) to a function u*.
Since W (GYc W1 (G), then W (G)yo W) ™ (G). The fact that u; con-
verges weakly in W™ (G) to u, means that for all functional FeW,,”(G),
F(u;) converges to £ (i) and from this follows that for all functional F¢
e WL m (@), F(up) converges to F(u), i.e. uj converges weakly to i in the space
W"; 1(G) From the above dlscusamn it follows that pu;, converges weakly
to o in WRH(G). As v i, converges weakly to i Wt (Gy), it follows
that y i == u . Then y uy’ converges to pu in W H{G)).

From (24) and (25) we have:

Re [(h, 1) — (A (), vy — (A @),y —w)]=

= —C (AQ; H(”;: - l') 'JUHW;;?; l((})) -
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As A(wy)) is bounded in X*, so there exists a subsequence A (") which
converges weakly in X*. From (25) it is easy to see that the limit must be
equal to . Then we get as k— oo

Re(i— A (W), u—vy=—c(R, ||(U-—1)lp" m- 1(0))

If we write lere v = r—:w, where we X, {w|j,. <R, and £—++0, then by
use of the continuity of A in the finite dimension and the properties of the
function (R, p) we pet:

(26) Reh— A(u), wy=0.
Since R=¢, and we¢X are arbitrary, inequality (26) is possible only if
Ay=~h
ProoF oF THEOREM 4. It is based on theorem 5. From condition (IV) it
follows that L(x, D} is coercive, from condition (I11) it follows that L{x, D)
is bountded and continuous in finite dimension and condition (V) implies
that 1.(x, D) has the semibounded variation property, i.e. conditions (I11),
{IV), (V) of theorem 4 satisfy the conditions of theorem 5. Then problem
(1), (2) has at least one solution ueW;" (G).
An algebraic formulation of condition (V).
Consitler the operator

(27) L{x, D)(u) == I 12—' (— D" D (Eq(x, DPu}+ B (x, D7)} +
+ F (=D T (x, D u),

|&|=m—1

|8) =, |y] =m, |r]=m, where L, (x, &), B.(x, &), To (Y, &) are continuous
functwnq and both B, (x, &), Ty (x, £,) are equal to zero if x is outside of G,,

where G, G is compact.
THEOREM 6. Suppose that
a) |E.(x, Eﬂ)lzﬂ.l(( > gl tep(x, 55)), p=2: and g(x, &) salisfies

Il =
condition (4).
b) The operator

Lo, DY)y = (-1 2 D=E,(x,D"u)

1=n

is strongly elliptic.
¢} B.{x, ), Talx, r,) are differentiable with recept to &, =, and

Ba(o & =K 2 15141,
T 8l =K 1) ( 2 1141y,

el =
P 3 Ba (x! w) = [g—1
iBar(x, -.?l T E“" Kf (1) ( Z l»?[q + 1) !
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t
-

Tt )l = PREED gy > ey,

a=; [ziz=m— 1

V=g<p—1, where f(x) and [(x) are measurable functions such that

L
[ )™ ax< e,
G

(28) - ;
[waﬁ;“ﬂ{m

Then the operafor L(x, D) defined by (27) satisfies the conditions of theorem 4.

Proor. From a}, ¢) we get condition (I111).
As a consequence of strong ellipticity of L, (x, D){ir} and by use of the
femma in the first part we have

(29) RelLo(x, DY(u), ), =Re 2 {E.(x, D), D*1it)s=

|=~m

=4, ”u"f"?p =K,

(5

where ¢, =0, K=0 are constants. From this we get
;7 - Yo P — .
Re /L (x, DY (), t)g=u, ””"wg:p(a) K-

+ Re Z (B.(x, Dvu), D*uye+ Re IZ {Ty{x, D uy, D? ), .
1

1 =m ==

Condition ¢} indicates that all ferms in the sums are of powers of I u less

than or equal to g4 1<p. From this, by use of Young's inequality with
power P and with small ¢, we get
41

Re (L {(x, DY (u), uyp=a Hujlwm —K’,
where o =0, K’ =0 arc constants, which proves condition (I1V).
From condition ) we have

(30) Re L {x, Dy(u)—-L(x, DY(), i —v)g=a, it — 1‘||fvm ) :

+Re LZ (B, {x, Dvu1)~ B, (x, D*v}, D*(tt =V} +

="t

F > N DT =Ty (x, DUy, D"(H—VDG]E

lol=m—1

=ua, i — "”fvg' @ TR+ 1]
Ny
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Furthermore
< f B.,(x, Dv+t D (u—w)dz D7 —v), D’(u——v)>

Z <b=?(u U)D"(H_V) D- (H V»G

m

Y

I.h

fv

Condition ¢} implies that b,, (u, v) increase as (Dvu)P~2, (D7v)?~2 and then

b., (U, v)EL (G) if €W (G), veWm(G). Furthermore if u|| m . =
- W p(G)

=R and [|1|| ER then b..(u, v} is a bounded set of functions in

(&), because we have

'ﬁﬁ
|
by (11, V) = f B (x, D?v+zDv(u—v))dz
and N
|Bo (o ) =Kf@( 2 16197 +1).
[vlSm—
Therefore
1B (6 Drv s DY =) [< KfG) (2 ID7v+eDr@=v)let+ 1)
yl=m—1
Hence
eyt <K f(")f[ (D D )]+ 1) d e
EKlf(x) > (IDrviet+|Drafet ).
Thus b=m
P _r qr-_]_) p(q 5
Py (0, WP = Ko f()F 7 [|va| 2 \Dvu| P2 +1].

irlﬁm—
Then due to Hdlder’s inequality
{bay (11, v) : ”H"Wg: @ =R, ”u"wgf j:ll(G}ﬁ R}

is bounded in L | (G). Therefore, by using Young’s inequality we obtain:
-2

](bz}'(u’ 1’) D~ (“ _]')! D= (H - II"))G| =
f.sf}—l-b“,,(u,v)D%u—v)i-]sD“(u—v)|dx5
G FE '

!

P
<Pt — b, (1, v)!_)?’(u-—v)j‘""2 dx+if[eD“(u—v)|de.
i p
G

p

w

6 ANNALES — Sectio Mathematica — Tomus XXV.
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(Here we have used the fact that B..(x, &) is equal to zero if x is outside

of G,.)
But we have
l 2, e D —0)|Pudx =P flu— l " @
pJ = ?
o
and

£ . P
_RT'_'_[_.'_]P—l j 1B, 2t ) D (1 — )] P~ de =
P 3

p—1 p_p' p
- [ ] jw ()| P D ()|
P

Using Holder's inequality we get
r

P
f [ (e 1)) P 1D (=) P =

|
3

<C|j |8 (22, 1)1 'd\l"“ 2 _]-|Dr(u_,.)]pm}p‘—"

‘.‘)

Finally we obtain

= K=l K (e RY =g

In the sanme way, I, can be estimated.
At the end for sufficiently small r=(Q, we get from (30) that

Re (L (x.Dy(w)—L(x, D)(v), u— 1'>G

=y flu — |W

p E;I ) -K (*"'n R) ]!” ] ”wm |

a, >0, which imtplies that condition (V) is fulfilled with a function ype Cg (G,),
where G, =G, and y = 1 in G, and the theorem is proved.
We shall mention an example which satisfies the conditions of theorem 6.

ExampeLe 3. Consider the operator

L, DYy = (= 1y" 5 D[1D7ulP* D u+f. () {|1D~tuls~" + D=u) ) +

(31) £ 2 DD T () Dl
:ﬂ!éﬂ’l—] ':m!-_:m
where
l =§=p— 1, 2, Pio =4, D= G, [, j: cC ((})

ST ]

have compact support aud G is an unbounded domain in R®.
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We shall show that L(x, D) defined by (31), and under these conditions,
satisfies the conditions a), 8) and ¢) of theorem 6.

It is clear that
E.(c, D2y = |Druip~ D2y, p=2;
B.(x,Dru)y = fL() | D=—tuls+Du, g—1=p-2;
T, D)= JT ou(x) | Dvu|Po,

f(u|§m
For condition a)
Ex (v, 5)| = 15177 = K 2 15770 p=2

di=m
Le. E, (X, 55) satisfies condition ¢} with g(x, 5) = 0.
For condition ), it is clear that the operator
Lo(x, DY(u) = (—l)mlz D= (| D= u|P~* D=1t}
is strongly elliptic operator.

For condition ¢}, it is easy to see that B, (x, £,) and T, (x, £,) are differ-
entiable with respect to &, and &, and

|Ba(x, &) = 1 ()] (1%~ lfq+|-,a|)-§Kf(x)( _Z le“+1)

where K is a constant, and f satisfies (28).
Also,

T ) = [T Jasa (O] & =K1 ( 3 [&17+1),

T

where K is a constant, and J satisfies (28).
Recall that

B, (x1 E'.l) :f= (x)(iE«_1["+.5¢) +

then
. a1 .
B:rx :f‘x(x)I Bx,z—l — l f (x)qfi_l ! ma—l 0
l f(x)‘?( u.*x l)q 1; §¢_1<0.
Thus
| Ba (%, EY = 1q] [ [ (O] [&amt|[#7 + [ fa(3)] =
=K/ (1--|§:_1 A 1) |
Also for o
T(x, &) = ]{7 o X) | 5] 0
w| ==
we have

Tor &) = £ Por| JT o (X) 15017 ]aas(X)lcfip"‘

|ru =
|u|7¢\'

[ihd
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therefore,
e (6, 5] = 1ol - [0 (9)] - 1521707 [ 1 1w (9 |sw|””"]5
Tl

EKf(x)( 2 &4 1),

frlzm

provided that p,,=1 or p,, = 0. i.e. the operator given by (31) is an ex-
ample for theorem 6. provided that p,,=1 or p,, =0.
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UBER MITTELWERTE MULTIPLIKATIVER
ZAHLENTHEORETISCHER FUNKTIONEN

Von

E. HEPPNER
Johann Wolfgang Goethe-Universitiit, Frankfurt am Main

{ Efngegangen am 15, Februar 1950 )

1. Bezeichnungen. Eine Funktion f:N-C heiBt multiplikativ, wenn
Fnm)y = J(n) f(m) far alle tetlerfremden natlirlichen Zahlen n und m gilt.
f hat einen Mittelwert M (f), wenn

lim — Zf(n)

X—=am Y nex

existiert und gleich M (f) ist. Weiter sei

G = |j‘:N -C, f multiplikativ, >’ _|f(P_o)|"' =eeund - |f(p“‘}{ },

Il ,U p k=2
wobei p die Folge der Primzahien durchliuft,
S @)
i (p? S) = T
i JZO pks
und &* ={fcd, q(p, §}=0 fiir Res=1}. Zwei Funktionen f und g heifien
benachbart, wenn
P p
ist. Benachbarte Funktionen wurden in [6] untersucht. Dort wurde u. a.
gezeigt:
Seient fe G und ge (3% benachbart. Existiert dann M(g), so existiert
auch M{f).
Dieses Argument werden wir im folgenden mehrfach verwenden.

2, Ergebnisse, Notwendige und hinreichende Bedingungen fiir die
Existenz von Mittelwerten fiir gewisse Klassen multiplikativer Funktionen
wurden schon von verschiedenen Autoren untersucht:
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H. DeELance zeigte fiie multiplikative Funktionen f mit [f| =1 ([2]):
S hat dannt und nur dann einen Mittelwert M(f)=0, wenn

1 —
(1) AL
] P
konvergiert und fiir ein v=1 ist f(2)=—1.
P. D. T. A__EruioTT zeigte ([4]):
Die multiplikative Funktion f hat einen Mittelwert ungleich Null und es gilt

) lml sup—~ 2= =

. REX

dann und nur dann, wenn die Reihen

I_ ]__ 4 ky|2
s 10 5 DIOP Ly sy u(;_n

P p p P p k=2
konvergieren und fiir jede Primzaht p

isi.

Dieser Satz wurde von H. Dasoussi verallgemeinert zu ([1]):

Sei A= 1 und f eine multiplikative Funktion. Dann existiert M(f}s=0
und es gily

(9) lim SUp—Z |f(M]*<

Kon n=x

dann und nur dann, wenn die Relhen

(6) s = s 0
P P | f ()| =372 p
()
=3z P
und
|f (9

(7) 2. 2

p k=2 pk
konvergieren und fdr jede Primzahl p ist
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Die Bedingung (6) dieses Satzes ist dquivalent zur Konvergenz von

: r P . P P
(vgl. Abschnitt 3). In dieser Formulierung wird die unwesentliche Konstante
3/2 vermieden.

Mit einem bekannten Ergebnis von E. WirsinG ([8]) wiirde die Exis-
tenz von M (| f|%) sofori aus (7) und der Konveigenz von

1= 1f(p*
27

folgen, wenn noch [f(p)|* = O{1) gelten wiirde. Mit dem oben zitierten
Benachbarkeitsargument 148t sicit diese letzte Bedingung etwa zu

Uor_

S (P32 p

abschwiichen, so daB sich dieser Teil der Behauptung also auch mit dem
Satz von Wirsing beweisen liBt.

Zum Beweis der Existenz von M(f) benutzt ELLioTT dhnliche Metho-
den, wie sie von G. HaLAsz in [5] verwendet werden. Wir wollen nun zeigen,
wie man die Existenz von M(f) direkt aus demn dort bewiesenen Ergebnis
herteiten kann. Es geniigen dazu etwas schwiichere Bedingungen als (6) und
(7) {vgl. Abschnitt 4). Wir zeigen:

Satz L. Sei f:N—C multiplikativ mit

X
g k=2
1 —
(11) - ——m
r P

konvergiert nund es existiert cine Konstante ¢ <1 mit

—1
a2 5 _if(p; .

Jf(p)£|l=-f
Dann existiert M(f).

Die Voraussetzuingen dieses Satzes sind natiirlich nicht mehr notwendig
fiir die Existenz von M (f). Dies erkennt man z. B. aus der folgenden Ver-
allgemeinerung.

Sarz 2. Sei W:N-~C periodisch mit Periode k, f: N—-C multiplikativ
und es gelfe
{(13) L Z Yig=1,

(k) amodk
(@, k=1
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p m=2 P
—
p P
konvergiert und es existiert eine Konstante ¢ <1 it
-
(16) > =7

P P
B~ (p)~c

Dann existiert M{f).

Auch hier sind die Voraussetzungen sicher nicht notwendig. Interessant
wire wohl auch die Frage, wieweit sich die etwas unschine Voraussetzung
c< 1 abschwichen laBt.

3. Aquivalenz von (6) und (9). Hier benutzen wir ein Lemma aus der
oben zitierten Arbeit [1] von DABoussI:

LEmmA L. Sei a1 und 2¢C. Dann ist [z]*— 1+« (1 — Re?2) stefs positiv
und es gibt nur von « abhdngige Konstanten ¢y_.¢4=0 mit

(17N G le—lE=z|*— 1 +a{l—Re2)=¢, |2-1|* fir |z[£%
und

(18) Glz|*=]z]*— 1+ a(l —Rez)=c, |2]* fir ]z|>%.

Es gelte zunéchst (6). Fiir | f(m)] -5% haben wir dann

o= @I-1 L 1-Reflp) -]

p P P
Hieraus folgt
o=t 5 1=Ref() {1=f(p)®
|F(p) =32 P if (p)]=3/2 P [f(pY=3/2 P

Da 2 f @) konvergiert und

== IS . L S

Ifpy=3rz P =%z P lripy|=32 P

1 S _ s FAC2 1

ist, konvergiert auch
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1—Ref(p)
| F(p)|=3s2 n
urtd wir erhalten die Konvergenz von
-1
| £ ey =372 P
Da aber auch
A
1o @)
Fpf=32 P =3z P
konvergieren, muf} auch
5 -1
P P

konvergent sein.
Es gelte nun umgekehrt (9). Dann ist zuniichst

R AL [ S@r-1 ., I—REJ"(p)]E
If (P =3s2 P LF(p)] =302 P
1S~ 1-Ref(p) _
== +,1
Z p Z P

Weiter haben wir auch

1o [If(p)l’-~ly+;_ l«lfge_;_(p)]s
1f(py| =372 P |f(m|=3r2 P
FEC ] 1—-Ref(p
=3 OI 4 5 AR
P P P

4a. Aus |f(p)i=1] und der Kenvergenz ven (1) folgt (12) (fiir jede
Konstante ¢ im Intervall 0<c<1).

Wegen |f(p)] =1 ist 1—Ref(p)=0, also
1 —Ref(p)
>3
P P
absolut konvergent. Hieraus folgt die Konvergenz von
--1~ und !
Re f{py=1-ci2 iim f(p)l=~er2 P
Nun ist (fiir |f(p} <1)

1 1 I
I W N o

P P P
1—f(p)l=c [t F{p}|=e/2 [l—Re f{p)[>c/2
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4b. Aus (6) folgt (12) (fiir jedes ¢ im Intervall 0 <c=1).
Fiir [£(p)] <3/2 und |1 —f(p)| =c ist

1—7(p)] = i -7 (p)Ie.

also _ _
Z i} -__I._(pl{{ - ] —f(P)t{ ea |
p Iy Fml=s2 f
1—f(p)=~¢
fip)i=32

Fiir | f(p)] = 3/2 ist
H = () =<F =S (D))"

also

“ 1= ;
s 10 5 or

p r P
L-f(p}|=r S{Mi=5.2
Fpl=32
4¢. Aus (6) Tolgt ‘
S L1 )
P I

H-ifiplhiee
d. h. Bedingung (12) fir die Funktion |f|*%
ist |f(p)]=3/2, so ist |1—|f(p)|*=<|f(p)]7 ist |f{p)]=3/2 und
[ F—|f (P =c, so ist |1—|f(p)*|<T<<|l—f(p)|% Die Behauptung folgt
deshalb genau wie in 4b

5. Beweis von Satz 1. Der Beweis von Satz I beruht fiauptsiichlich auf
dem folgenden Salz von (G. HALASZ:

LEmma 2. Sei f mulliplikativ und gelte

(19) fo)=0(),
1/ (p™)]
(20) e
; fr:'2=2 Pm
fiir Res =1 fiir alle Primzulifen p und
sy o L) ¢ Bl

22 f‘ L= L = ‘+' O —_—

( ) (S) ngl e s—1 [U—l

gleichméfig fir Res=o>1.
Dann existiert M(f).

Wir wollen nun aus den Voraussetzungen von Satz | die Voraus-
setzungen von Lermuna 2 herleiten. (Man vergleiche hierzu auch [7].) Zu-
nachst zeigen wir
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Lemma 3. Sei h nudtiplikativ, i(p™) = 0 fir mi= Z kanvergent

und es existiere eine Konstanle c= 1 mit |h(p)| =c. Dann gtlt fitr o—~1+gleich-
mdfig in t = Ims mit einer Konstanten D die Beziehung

Hi 3 M0 _poofli=ll)

n—y I

Fir |Im s| =12 gill gleichindfig fn { =1ms

O

Bewers. Fiir Res=1 ist

H(s) = H (s)exp [2
7

o g1+ "Deo] 22

il

mit

Wegen |a(p)| =c <1 ist H, {s) holomorph in Res=1/2 und in Res=1 gleich-
miBig beschrinkt.
Hieraus folgt

HEl=00men (3] =0 ]

gleichmabig in { fiir ¢ —~14. Damit ist die zweite Behauptung schon gezeigt.
Sei nun a+c<1, x=0. Dann giit fiir f=(c— 1)

o
(o— 1) = 5—1]

H(s) = D+o 13"”]

o— 1

also

gleichmaBig in || =(e— 1)~ [In diesem Bereich ist jedes D ein 0[ {_s—_i|_] ]
Imm Bereich || =({o— 1)* ist flir o~1+ T
H )= H (D+o(l)
wegen der Stetigkeit von H, (s} im Punkt 5= 1.
Es geniigt somit in |/} =(¢— [)* die Beziehung

(p) (151
23 ex —=l =D to)l—
) p[g: P ] [ o—1 ]
fiir o~ 1+ zu zeigen.
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Man wihle eine groBe positive Konstante M. Wegen der Konvergenz

der Reihe Z (pl ist nach dem Stetigkeitssatz fiir Dirichletreihen

hip) _
im Winkelbereich [{] = M{a—1), d. k. in diesem Bereich gilt (23).
Es bleibt der Bereich

M(o—1)=|i]={o—1).

D +e(l)

Dort vergleichen wir
i, (8) = exp [Z i p)]
p P

mii

i, (6) = exp [Z -h(g)]
F;

) exp[z —Ip:[—l+Revm”.

u, (a) ” P

und erhalter

Nun ist
. I ,
‘Re —(—i])— =jh(p) <1
: p

Deshally ist hei festem t die rechtssiehende Funktion monoton fallend fiir
 ~1+. Der Quotient wird also maximal, wenn o bei festemm ¢ auf dem Rand

des Winkelraumes |{] = M{o— 1) gewdhlt wird, d. h. fiir 0 = 0, = l*-%fl'
Es gilt also
u. (o H)
1, (5)] =, () 20D
tty (67)

Mit von M unabhdngigen O-Konstanten ist
”e_(“):o[-,&)"]__o R |fl] O[ls—li_. L.
s—1 M a—1 M

iy (o)) {(oy)
Weiter ist
lug{oy+ ) = |D'[+oy (1) =D} +1

wenn ¢ geniigend nahe bei 1 hegf. Damit ist also un betrachteten Bereich
, , is—1] 1 .o 1851
6@ =D 1=l @)1+ 11 =0 B i ST

a-1 M M(c—1)

Hiermit ist das Leimmma 3 bewiesen.
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Mit Hilfe von Lemma 3 sollen nun fiir eine multiplikative Funktion f
die Voraussetzungen von Lemma 2, insbesondere die Asymptotik (22),
nachgewiesen werden, falls di¢ Funktion f sich , geniigend wenig" von einer
Funktion g unterscheidet, fiir deren Dirichletreilie eine ,,gute’* Asymptotik
bekannt ist. Wir zeigen

Lemma 4. Scien fund g nudfiplikative Funktionen mit

y L {p™)
(24) AN
; }i‘gﬂ pm
(25) fp)=0(1),
(26) (P, 8)=0 fiir Res=1,
- < —2(p)
27 S —g(p}
5o
komvergiert es existiert eine Konstante c< 1 mif
(28) |f(p)—g(p)} ==c,
(29) 20 und (fxg*)(pm)=0
fiir alle m=2 und alle Primzahlen p und
(30) Gis)i= > %)— = -SD [ +OUs).
n=1 -

Dann existierl M{(f).
(Hier hezeichnet g* die beziiglich der Faitung % zu g inverse Funktion).

BewEs. Sei = fxg*.h erfiillt die Voraussetzangen vonr Lenuna 3.
Damit gilt

(31) H(s) =0 (?;ll)c fiir [:|=3—;--
und
Is—1|) .. 1
(32) H(s) = D+a[———] fiir |f|=—.
o— 1 2
Aus F(s) = H(s)G(s) folgt damit
. I8 |$] . 1
sy =0 |-~ | = |12 -
(33) E (s) [(a_l)c] o[a__l] for 1] =
und
(34) Fsy = 2P +o[ ! ] fiie |l <—-.
s—1 c— 2
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f erfiiilt somit die Voraussetzungen von Lemma 2 und wir erhalten die
Behauptung.

Satz | ergibt sich nun sofort mit dem oben zitierten Benachbarkeits-
argument aus [6]. Wir setzen in Lemma 4 g=1 und wahlen f;, multiplikativ

mit
uﬁw)z{ﬂm fir |f(p)—1=¢, p=2
1 sonst

folp™ = fo(p) fir m=2.

Nach Lemma 4 existiert dann M(f,). Weiter sind f,€4* und fc & be-
nachbart. Deshalb existiert auch M(f,).

6. Beweis von Satz 2. Zum Beweis von Satz 2 miissen wir nur in Lemma
4 eine andere Funktion g wiéhlen. Seien y,,j =1, —, ¢ (k) die Charaktere
mtod &, y, der Hauptcharakter. Wir setzen

1 o
- W (a)y, (@).
T (k) a}%gﬁ {a) z;(a)

Dann gilt fiir (1, £) = |

e (k)
() = 2 wj ;) und o« =1.
i=1

Sei

wobei die Konstante L spéter geniigend groBb gewéhlt wird und
K=k JI p.
p=A
ik
Wir definieren die Charaktere z;, j = 1, —, ¢ (k), mod & durch
zi{@) fir (g, k) =1
N .

'-’. ) =
“ @ sonst

Dann gilt wieder

(£}
W)= > o,y fir (nk)=1.
izl

Wir definieren nun weiter die vollstindig multiplikativen Funktionen g;
fitr j = I, —, ¢ (k) durch g,(p) = =;7;(p). Sei weiter (fir Res=>1)

G;(s) = i 8t

=1 e

Delange zeigte in [3] fiir j=2:
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G;(s) ist holomorph in Res=1—¢ fiir ein geeignetes £=0 und

G;(s) = O((]0g|s|)1) fir Res=1, |Ims{=

I\J|—-

Weiter ist G, (s) = L (s, 7,)-
Sei nun g, =g, % ... ¥ g Wegen
it 1
T T
sind alle g,€ g%, also ist auch g€ &% Sei g die durch g(p) = g, (p) defi-
nierte v o]]stand]g multiplikative Funktion. Wegen

o S EW g
P &Aoo L
ist auch ge g%, falls L geniigend grof gewdhlt wird. AuBerdem sind natiir-
tich ¢ und g, benachbart. Nach [6] unterscheiden sich deshalb ihre Dirich-
letreihen nur zum einen in Re s=1 beschriinkten und stetigen Faktor. Somit

erfiilit auch g clie Voraussetzungen von Lemma 4.
SchlieBlich sei noch die multiplikative Funktion f, definiert durch

fp)y fac (f(p)—¥ (p}i=c, p= A, p=k
(p) sonst

und f, (™) = £, (p) (g (M)™! tiir m=2.
fo erfillt die Voraussetzungen (fiir f) von Lemma 4:

Es ist

Jolp) =

Ty (P, §) = Fa (pr s)
fo(P)

oder

‘Tfu(p S) = ] 2= ng(P 5).

Dabei ist
1 et ]y
[1 _L——l_] €|§9g(Pr3)l€[1 {!-T] .
Hieraus folgt f,€ 4%, falls £. geniigend grofl gewihlt wurde. Weiter ist
auch
Jox @) (p™) = fo (p") = Lo (") g (P} =

fitr ni=2. Nach Lemma 4 existiert also M (f;) und mit dem iiblichen Be-
nachbarkeitsargument folgt hieraus die Existenz von M(f).

7. Satz 3. Die in Lemma 4 geforderte Asymptotik fir die multiplikative
Funktion 148t sich natiirlich auch aus einer , geniigend guten'* Asymptotik
fiir > g(n) herleiten. Man zeigt so

H=x
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SATz 3. Seien f und g multiplikative Funktionen mit

(35) S g(n) = Cx+0 _————] o

nex (tog x)”

(36) dpy=0q), 3 3 8 lg(”m)' ,

g om=2

Fq (P $)=0 in RCS?:I,

a7 Al If(p’”)l |

p me2

; A
p p
konvergiert, es existierf eine<1 mit

_ P p
ifipy—g @)=c

Dann existiert M(f).
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1. Introduction. Consider the fifth order differential equation:
(L) xOpg xW g, e, Fra,x+a;x =0

in which o, d,, . . ., a5 are all constants. Qur arguments in [1] and [2] show
clearly that if

(1.2) a4>ia§,as¢0
4
or if
1
(1.3) a, =0, a;sgn u1>?a§f01]—1

then the auxiliary equation corresponding to (1.1) has no purely imaginary
roots whatever. Thus if (1.2) or (1.3) holds then (1.1) has no non-trivial peri-
odic sofutions. By the general theory this implies, in turn, that the perturbed
equation

(1.4) X 4q, x g, X+a i+ a i+ ax = p(l)
in which p(z0) is any continuous e-periodic tunction of f does have an -
periodic solution subject to (1.2} or (1.3). The object of the present paper is

to extend this result for {(1.4) to equations in which ¢, a,, ..., a; are not
all constants.

2, Statement of the results. We shall be concerned with the two equa-
tions:

X4 X0+ [ E) X+ (&) X+ [ () +f5(x) =
(2.1} = pt,x, %, %%, )

T ANNALES — Sectio Mathematira — Tomus XXV,
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X+ g xO 4 g, X+ g (5, %5, 8 0, XM+ g, () x+g,(x) =
(2.2) = p{,x, % ¥ % x4

in which a,, u, are constants as before, The functions f,, f., f1s fss 25 00 &5
and p are continuous functions depending only on the arguments shown
with g; and p e-periodic in f, that is g, (f, x,, ..., X)) =g, (+ o, X, ..., X;)
and p(t,x,, ..., x) = p{t+m,x,, ..., x;) for some w>0 and arbitrary f,
Xy o .., X5. We shall establish here the following theorems:

THEOREM 1. Suppase that
(i). there exists a constant a, =0 such that

(2.3) e G =a, forall x,,

1
(2.4) a;=inff, (xz)}—4— as;

(i1) there exist constants A,=0, A, =0 such that
(25) o, x,, ...,x5)|:;;4(,+A1(|x3|+|xd|)
Jor all t,x,, ..., x;; '

(i) f; satisfies either

(2.9 Sx)sgny,«+eo as x| +oo,
or
@.1) fole)sgny, ~— = as |x]

Then there exists a constant ¢y,>0 such that (2.1) udmits of at least one
er-periodic solution, for all arbitrary a, and f,, if A, <e,.

The conditions here can be seen to be a generatization of (1.2).
THEOREM 2. Given the equation (2.2) suppose that a, =0 and that
(i) there exists a constant a;=0 such that

{2.8) (L xy, .. X)) =a, forall 1,x,...,X,,
(2.9) a;= inf x gy (x;) sgua, > ; a3 |1
[xy|z=1

(ii) there exist constanis A, =0, A, =0 such that
(2.10) 1Pt X5, o0 G = Ag A ([ |+ 0]+ |5])

forallt, x, ..., x,.
Then there exists a constant £, =0 such that the cquation (2.2) admils of at
least one w-periodic solution, for all arbilrury a, and g, if Ay =¢,.

Note that the conditions here generalize ( 1.3).
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3. Some useful preliminaries on the proofs. Qur proofs will be by the
Leray-Schauder technique, with the equation (2.1) embedded in the para-

meter-dependent equation:
(3.1) XO pa, x4 {1 — D) ay+ Af, (§)) X+ 2S5 (%) £+
H{(l—=2ya,+2f X+ (1 =Dex+2f,(x) = Ap(f,x, %, ..., x%)
and (2.2) embedded in the equation
(3.2) XOpg xOpa, X+ (1= ay+ 28, x, %, ..., X)) x4
+Ag, (X+(1—-)A;x+7 g, (x)=72p(f, x, %, ..., x¥).

In either case the parameter 2 is restricted to the range O=<ji=<1. The ¢ in
(3.1) is an arbitrary constant which shall be fixed positive or negative
according as the f; in (2.1) is subject to (2.6) o (2.7). The constant A; in
(3.2) is defined by

A; =agseng, .

Note that, for 2 =1 (3.1) reduces to (2.1) and (3.2} to (2.2). Also, for
=0 (3.1} reduces to

(3.3) X g, ¥t a, X a X +ex =0
while (3.2) reduces to
(3.4) x4, x40, X+, %5+ Agx = 0.
Since ¢ ~0 amd u4>—i--uf:; (sce (2.4)) the auxiliary equation corresponding
to (3.3), that is
P+mrt+a,ritar+e=0,
has no purely imaginary roots and thus (3.3) definitely has no non-trivial
o-periodic solutions. Analogously, because of the condition: aa}—;— azja, |t

(See (2.9)), (3.4) has ne non-trivial e-periodic soiutions. Thus Theorem 1
(or Theorem 2) will follow frem the vsual fixed point considerations (see for
example [3; Theorem [.38]) if it can be shown that there is a constant O
whose magnitude is independent of 2(0=J=1I) such that, if x(f) is any
w-periodic solution of (3.1) (or (3.2)), then

33y |x{®]=D, |x{O =D, |2®O| =D, |x(OH| =D, [xX*V ]| =D
for all 1€ [0, m]. Note that the {-range here may be replaced by [T, T+ o]
(arbitrary T) since we are dealing with an m-periodic x(f).

4. Some remarks on aotation. Throughout what follows, D's with or

without subscripts denote finite positive constants whose magnitudes depend
on ¢, a,, iy, 4y, Ag, f5. fy and f; (in the context of Theorem 1) or on y,, a,, a;,

T*
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Ay, g, and g; (in the context of Theorem 2). The D’s are all independent of 7.
Finally a I without a subseript is not necessarily the same each time it oc-
curs, but the numbered D’s: Dy, D, ... retain a fixed identity throughout.

5. Proof of Theorem 1. Assume now that hypotheses (i} and (ii) of the
theorem hold, with f; subject to (2.6). The relevant parameter-dependent
equation is then (3.1) with the constant ¢ fixed posifive but otherwise ar-
bitrary. We shall set

(.0 2 ()=(1-2)6+LE), fi.(0=0-2)a+2f&),
f5.: (%) = (1 =2)ex + A fs (x)
so as to be able to write (3.1) in the more compact form:
XO 4 X0 4 o, (RS (D) S (O E S () = 2p (LY, - xD).

In what follows in the rest ot this paragraph x = x(!) is an arbitrary «w-peri-
odic solution of (5.1). We will now show that x(f) satisfies (3.5) if A, is suffi-
ciently small.

Our main tool in the verification of (3.3) for x(f} is the function

o

X

V)= —x(x"+aq, 'i:)+_ir'x+(l)ul.'\’2—}.f _l’jg(]’)(f}'——ff;,_;_(s)ds.
0 0

An elementary differentiation will show that
(5.2) V=U,—2ip{t.x, ... x0
where

Upy= X+ 1 ()7 +f, () xX.
By (2.3} and (2.4),

|fo, i) =tay fa,(X)=u,
so that

(5.3) 0% X, X% —u, |X| [X],

from which it is now not difficult to verify that

(5.4) Upy=Dy (% 1 x?),

for sufficiently small Dg. For, suppose for example that D, = 1, then, by (3.3),
Up—Dy (2 +x%)=(1- Do) x* + (¢, - Dy) ¥ —a, |3 | x| =

E(l—Du){IT\"I .k }"+%(1—Du)—lul.tﬂrf—i-(!—vn)-‘Ulf

where
Uy = (da, —a3)— 4D, (1 +a )+ 4D% .
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However, by (2.4), 4a,—a%2 >0 and so {J, is strictly positive if, say

1
0<D,< q (4a,—adj(l+a,)1.
Thus U,—D,(x*+x%) =0 if D, is sufficiently small, which gives (5.4) and
hence, by (5.2) and (2.5), leads fo the estimate:
V 2Dy (24 82— {Ay &1+ A, 151 [] + 18} b= Dy (22452 —

1 0 oo 1 . -
(5.5) — A, x| - A (3x2+ %) = D, x~+[DD— 2-3A1]x2— Ay |%] —

L. S B R
ey A3 =D, (x-+x2)-—2— A x-D,

for some Dy, D, if A, is fixed suificiently small, say A, =D,.
Because of the {assumed) e-periodicity of x, we have, on integrating
(5.3), that

{(5.6) Olef('i“%chz)dr——-;—A, fﬁfzdi—DL,w.
0 4]
Combined with the inequality

" [

(5.7) fiﬁzdfﬁ-i—w“n_a /":i'zdi,
0 0

which can be verified by substituting the Fourier expansions of ¥ and X in
(5.7), (5.6} leads to the estimate

m

[,91_.:5 wia ? I]f'i'?dt-i—Dl fﬁdhsl)gw.
. ] ;

Hence, if A, is further fixed such that
A o?a2=4D,

as we assume hepceforth, then

o

_rl) le(i2+x'g)di<.ﬂgw.

In particular

(5.8) f =D,
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Considering now the identity:
i

(H = .ic'(T,)+f x(s)yds
T

with T, fixed (as is possible in view of the periodicity condition x(0) = %(w))
such that (7)) = 0, we have that

L I r oy --]
max |#(f)} = f % (5)| ds < o” ( f X2(5) a’s)'
0=28=a
s Lo

by Schwarz's inequality. Thus (5.8) implies that
(5.9) nax [i{)| =D,.

[
0=z

From this, on referring to the identity
i

i'(i)::x(Tz)+fjc'(s)ds

with T, chosen such that %(7.) = 0 {the choice being possible in view of the
periodicity condition x(0) = x(w)), we have that

(5.10) max |x(j =D, w.

hrin

To obtain an estimate for |x(f)| first note that, because of the w-peri-
odicity of x, integration of both sides of (3.1) yields the result

{5.11) f {fs 20 —2p(t,x,x,....x")dt=0.
[+

But, by (2.3), (5.9) and (5.10),
(5.12) 2P (X, .oy x| =D,

for some D,. Also, since ¢>0 and f; is subject to (2.6), there clearly exists
Dy such that

{5.13) Sa(xXsgnx=D, for [x[=D,.
Because of (3.11), (5.12) and (5.13) it is plain that {x(T3)j < D, for some T,.
Hence

(5.14) max {x (O =[x () + f | (s}l ds=D;+ D, w*.
0=,
0

by (5.10).
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It remains now to obtain estimates for | x(t)| and |x*(f)| in order to
complete our verification of (3.5). For this, note that if (3.1) is written as:

(5.15) X4 a, x® = Q,

the function Q,, by virtue of (2.3), (2.5), (5.9), (5.10) and (5.14) would
satisfy

(5.16) |Qul=Dgs (| X] +1).

Thus, if we multiply both sides of (5.15) hy x® and integrate from ¢ =0
to f = m, we shall have, x being w-periodic, that

f{x(&)}zdrﬁoﬁ(f %] |x<5)[dt+f ;xm]m),
0 4] [¢]

or, on applying Schwarz’s inequality, that

e

m 1 . 0
A3N2 g ne |2 % I S N
Of {x&% di-—:Dﬁ[hf =9} dt] [w +|f ¥ dt} ]_ﬁ
=D, {xn2 gy _;

o]

(5.17) [ (N gt =D, .
)

by (5.8). Hence

Since x(T,) = 0 for some T, it follows from the identity
t
W (t) = X (1) + f X (s) ds
E
and the result (5.17), in the usual manner, that
i 1
(5.18) X0 (0| =w® Di O=t=0).
In turn (5.18), combined with the identity
t

M =xTH+ f X (s) ds
Ts
with T; chosen such that X (7} = 0, implies that
3 L
(5.19) x(h=o® D§ (Osi<w).



104 EZELIO, J. 0. C. AND TEJUMOLA, H. 0.

The results (3.9), (5.10), (5.14), {5.18} and (5.19) fully verify (3.5) for the
arbitrarily chosen wm-periodic solution x(f) of (5.1). The theorem now follows,
as was pointed out in §3, for the case f; subject to (2.6).

For the case f; subject to (2.7} the same method as before applies except
only that the constant ¢ in (3.1) will now he fixed strictly negative. The
estimates (5.9) and (5.10) are in any case independent of ¢ or the restriction
(1.5) and are thus valid here. The choice of a negative ¢ indeed only comes in
for the sole purpose of establishing from (5.11) that

{5.20) |X{(T)| =D forsome T.

This is secured here by the fact that if ¢<0 then f5 ;(x)sgnx—~ — o as
x] - oo, With (5.20) assured, (53.14), (5.18) and (3.19) can now follow ex-
actly as hefore, so that the theorem alse holds when f; is subject to (2.7).

6. Proof of Theorem 2. The numtbering of the D's will start afresh
fiere in connection with the parameter-dependent equation (3.2), which we
shall write in the more compact form:

6.1 N x4, X+ g R Ag Rkt =2p iy, oo, X))

(O=21=1)
where

faa={l—a,+ig{t,x, ..., x"), g =(1-2)Ax+7g,(x).
Note that
(6.2) 13,5l =y
by (2.8), and that
x g ssgna =a; (fx|=1),
by (2.9), which in turn also implies that, for some D,
(6.3) Xgs5, s sgna, =2, 32— Dy forall x.

Let x = x(f) be any m-periodic solution of (6.1). We shall now show that
x(f) satisfies (3.5). The main tool for this is the function

(6.4) V = Wsgna,

where
X

W =x(¥+a%)—-x(x*+a, x+a.,x)+ ! Uy X — [g,(s)sds

1]
Differcntiating (6.4) with respect to f we have, in view of (6.1), that
(6.5) V=U,—ixp(t,x ..., x")sgna
where
(6.6) U, = |a,| ¥+ x3gs ;58N a,+xgs ;580 a,

= |a| B+ xXgssgna fa; x2 - Dy,
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by (6.3). It is readily verified from this that
(6.7) Uy,=D, (2+x4 -1,
if Dy is sufficientty small. Indeed assume for a start that D, = ja;| and set
Us=U,—{D (#®+x2)—D,}.
We have, by (6.6), that
Ug=la | ¥+ xEgs 580 a, +o5 X — D (82417,

o, ] 2
= (la| —Dl){x + ':,‘(|“1| — D) 1 xgs, 1580 al} -+
|
‘f‘_4_(|ﬂ'|| — D)y U X2,

E%('“\i =D U,
where
Ui=4(la| D) (2 — D) — g3 =4 (1| - D)) (05— D)) a3,
by (6.2). Hence
Up=@ o) 25— a3)— 4 (Jay| +o5) Dy + 407 .
Since 4fa,] o;—al=0, by (2.9), it follows that U, >0 if, for example,

Dy= - (4lay) s — ) (|| 4 )
as we assume henceforth; and hence U, =0 which verifies (6.7). Since
[xp (6., -, XD = A, (x| + A, (x| + 5] + %)) |x]
by (2.10), it ts clear from (6.5) that
(V=D (32 +X3)— A, |x] — A, (|x| + |%] + %]} x| = Dy,

. . 1. I
(.8) | =D E A A x4 [ ste )i,

:_-D:,(562+x2)~%A15rz—D3.

for some sufficiently small D,. Integrating (6.8) from t =0 to { = now
gives

I

(6.9) (]:zsz(J'éz+x2)dt——;—Al ficzdt—Dsw.
0
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so that, since

we have that

l[)._.—;-m'“’.‘z"'zJfi‘2d1+Dz /‘,\‘ZEJ’I{-.D;;GJ.

0 i}

Hence if, say, A, =4D,m~27%, which we assume, then

-

I)L,j ,'\’zdf-{—?Dgf.\‘edi'—:?Dam.

[H] 7]
Thus
(6.10 [ X*dt-= D,
0
(G.11) [ #dt=D,.

a
As before, a combination of (5.11) with the identity:
3
2 =x(M+ ] x(s)ds.
¥
where T is fixed such that X (T) =0, lcads to the estimate

1 1

"

(6.12) () =Dy=0” D (O<t<m).
1 1

Also (6. 10y implies that jx{7T)| ﬁD;‘T w ° for some T, and therefore as usual,
because of {(6.12), that

(6.13) X =D, (O=f:zm)

1 |
where D, = D{ o *+ Do
To obtain bounds for | X (f}| and [¥ ()| let us note that if (6.1} is setin
the form

(6.14) X fgy x4, x =Q.



the function Q,, by (2.10), (6.12) and (6.13), satisfies
[Qo| =Dyt (a3+ A;) 1X] -

Thus if we multiply (6.14) by x®) and integrate we shali chtain, x being
w-periodic, that

(a,] f{.\'f*”}‘-’df.{f XD (D + (ta+ A |2]) dE =
1] (4]

= =] {

-_;Dsmf(f {x“)}gdf)§+(us+ A,)( [ e gy )_([xz ar)f,

by Schwarz’s inequality. Because of (6.11) the last inequality, with A, =D,
definitely implies that

ia | {xt2di=D ( {xt83)2 dt)_!_
[reraso( f

e

[ (AN gt =

1]

and therefore that

From this the usual arguments can now be adduced for the estimates
(6.15) |X()l =D, |3 =D O=f=xe),

and it remains only to estimate a bound for |x(¥(¢)].
In order to arrive at this remaining estimate we shall recast (6.1) once
again, but now in the form:

(6.16) x(a]'f‘al XM = Q.
Because of (2.10), (6.12), (6.13) and {6.15) it is evident that
[Qs] =D

so that, if we multiply (6.16) by x'*? and integrate we shall obtain that

© i d Ny !
f (XN dt=D f |x3)| df=D ( / {xtane dt) 2
) o 0
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by Schwarz’s inequality. Hence
f x9N di=<D
0
from which we now have, in the same way as before, that

max [x0 () =D O=l=wm.

This concludes the verification of (3.3) for any w-periodic solution of (3.2)
if the A, in (2.10) is sufficiently small. Theorem 2 is thereby estabiished.
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Let
(1) AEA, Tmp20, w =2, =28,

Let p(2) be the Weierstrass p-function with fundamental periods o, and
m,. 1t satisfies the equation

Vi=4P—g,v—g,.

THEOREM. Lot w be uny of the three mmbers 1, 3 and 1+ 5, «€A,
log o= 0. Then among the five numbers

(2) log o, af. a® 8,=0p(w), 8, =Dp" (w)
there ure two algebraically independent.

Note 1. It is known, that p’{wm) =0, so each of the numbers §, and
8, is algebraically dependent with g, and g,. This implies the possibility of
replacing &, and &, in the formulation of theorem with g, and g,.

NoTe 2. [t is possible to replace the number $2 in the formulation of
the theorem with 8, €A if we replace in the set (2) the number «* with &
and «%'. One can refuse that g be algebraic (or 8 and 8,) if one adds to the
set (2) the numiber # (or 8 and 8,). It will be necessary to make the corre-
sponding changes in the lemma 10.

Note 3. If deg 8 =2, then we can leave only three numbers: log «,
a* and one of the numbers 8 {or one of the numbers g) in the formulation
of the theoren.

NoTE 4. For deg 8 =3 the theorem (even without the requirement
[im #=0) is the coroliary of Gelfond’s theorem [1], because in this case the
numbers »” and «™ are algebraically independent.

Notg 5. The paper [3] presents formulations of theorems, which are
similar to the formulation, given above. But the scheme of proof given there
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contains asericus mistake — the inequality (5} is wrong. But if we replace it
with the true one, corresponding to the author's conditions, the further dis-
cussion of the work [3] becone wrong. The complete proofs of the assertions
of the paper {3] or the improvement of the mistake mentioned ahove is
not yet published, as far as the author is informed.

The base of the proof is a well-known Gelfond’s method.

LEmMma 1 [2]. Let o, €A, n,=dege,, L, =L(z). k=1...,8; 1=
= deg Q{z,, .... %)
D2y . 2 EL [, 2], degz, P =N, L(P)=1L.

Dloyr oo ag) =0,

I

then

Ny

I/j)(a]‘ L, gs” =[1-n 1}' L; flk.‘
KL

Lemma 2 [5]. 1f
2{z) = u, [n[ (z— 2.
then -
) ﬁ. max (1, o)=L (D).

LEmMMa 3 [1]. Let
Py="1&) ... Ps(2) n=degPAz),
2 LY=L D) ... L(PY=L(D).
LEmma 4 [6]. Let w, o, €€,
PEY) =Dy + .. AP EL[x, ¥, Pifw) =0, Diw, o) =0,
then

then

r—1
0y = Do) 1D Dy (@) 0k = Do) 1 G, (00 0,),
k=0

Dea(DEZ]x], LQ)=L Py ', deg, Q,=(n+1)deg. .

Lemma 5. Let M=m, «, EZ r=1i, oan =1, ... M,
A = max u.
Isr=m | Z 1

then there exists a set x,, ..., xy € Z, satisfying the conditions

X+t dy Xy = UI
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< max |\; [(2,4) M= "']+1
I=k=

The proof is well-known.

LEmma 6 [6]. Let b (z) be a Weierstrass elliptic function, #,0¢N. There
exists an absolute constant v, such that

(b7 () = 2 Aabcn PR P (R P7E)F,

2a+ 3 44de—="n

where o, b, ¢ and A_ .,  are non-negative integers and
(3) 2 [qtf, hoe g = 6! 2” f}'uﬂ .
260 =34 dr=2nLy
It is known, that if 20, and 2, are fundamental perieds of p(z) and o is
one of the numbers w,, w,, m +w,, then § (w) = 0. Then

(pu (z))(ﬂ) - Z Aa, 0, ¢, ég 63' ‘SD =} (w)‘ ’52 = p” (w) -

2atde=201x
(4}

LEmma 7. Let o, oo-be transcendental numbers, P(x, y)eZ [x, y), P20,
P irreducible, deg, P = », deg, P = », P(m, m;) = 0. Then there exist A, y,,
;, depending only on P(x v) @, my, such that if for J¢A the inequality

(5) [en—Z{ =Lt =, degl=un, L(O=L

holds then there exists o, €A, which satisfics the lll{,(.]lldhtltb

oy — L[ =Lonine Ly = L(5)=Lnenn,

i
—=degl=m=nv; degQ(L, L)=mr.
t!
Proor. In what foliows 3, », ... denote positive constants, not
depending on .1, 7 and L. We have

(6) 1P(E, o) = 1P o) — P (0. on)] = “ (X, o) dx l
< jew— | mdlx 1P (x, )] = |o—L] 9.

The polynomial P(Z, y)z0. Indeed, it depends on v, because P{wm, w,) =10
and o is transcendental, and all the coefficients of the powers of ¥ in P(x, y)
cannat vanish at x = [ because P(x, y) is irreducible. Further, P, ¥) can-
not be 4 monomial. Indeed, if £(S, ¥} = F(3) ), then we could ebtain from
(5) and (6) that

O< [FO)| jeil =y L7
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and it is impossible for sufficiently large 1, as by lemma 1

(7) BN > LR Lot ey L,
and so
(8) P, )=y Pr't-+r(c) I (}’—33) »
=1
where v, >1=0, »g=1, Py1. (X)€Z [x]. Let
H=58, loy=5 = 12‘2‘_ |wy — Bt

then from (3), (6), (7) and (3)

]
(9 foy =5 E = {IP (& o)l o7 [ B Q)1 =
1_ _ n.l—_—l
=(y L= ysy5 L) Y=yl
As P(L, £,) =0 then deggey i, <#, i.e.
(10) n=degQ(, )=nv, u =degl,=nr, .
If a, 1s the leading coefficient of the defining polynomial of the number

S o=, L., 89 are the conjugates to O then

Ry} = a; 1[ P, y)eZ[y],

m=1

and by lemma 2
"
LRy<=L(Pya, if max(1, |Z)y=L (PP LY = L evn.
m=1

From R(I) = 0 it follows, that the defining polynomial @, (') of the number
¢, divides R(¥) and in this case, according to the well-known Gauss lemima

RM=Q(M ) QLOeZ[y],
therefore L{Q,}=1 and by lewmuma 3
Li=L(5)=L(Q)=L(R)2tu < Lrennidnigfingnn,

We have only to give the lower estimate for n,. From P({,;) =0
it follows
nH=degl=vn, m=ny,

and the lemma is proved.
LEmma 8. Let n=2, Z¢C,

(11y P@=ua, J] @—2), ,>0, P@EL[z]. a7e;, ],
k=1
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then
l-n

(12) [P =8(—1) 2 LEPR"27n 5= min |I—m.

l=k=n
Proor. Let & = o, — |, then

al|+|g_°’]| -

POl = 0,6 ] 1= =a,0 fp Sl
=y, N0 [n[ ETE TR
Let =
O A

=2 j=i

then DeZ, D=0 and

n_]]|0'1—ﬁl—l/"f)ﬁ“_”1] [T lzi—ayl ™

F=32=j=i{
As

) 3

A= 1T )= |

i=3 2= j<i

the Hadamard’s inequality implies, that

H~—1

14| = H Vi1 max(l, a7y = (n=1) 2 J7 max(l, a2

i=2

Now by lemma 2
1—r

(PO =620 "YW atn@m—1) " []max(l EF S

[
=52y (n—1) * L(PyE.
LEmmA O [1]. Let 2€C. Let B (2}, ()€ Z [z], n,, 114, L,, L,-their degrecs
and lengths. If

m i

P@I=4mmren * LRI, R@)| <4 ey P LT LT

then P, (z) and P, (2) have a common zero.

Lemma 10. Let «, B¢ A, log a=0. If each of the numbers o and «* is
algebraically dependent with the number log«, then there exists such a

8 ANNALES — Sectip Mathematica - Tomus XNV,
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constant 1 = /A(x, 8)y=0, that for any <A, n=deg 2, L = max(L(?), 3),
the inequality

[log e —Zj=N—tN N =nitlog i loglog L
holds.

Proor. Suppose, that for some Z<A the inequality
(13) Hog o - Zf = N- e ?

holds. We shall show, that then . [, is less than some constant. By data there
exist irreducible polynomials

Py = 3 BO¥. REOZ0G Q)= 3y, 400
(14) k=4 i=u
such that
{15) Ploga, %) = Qlogz.2") = 0.

As
log L--2Nlog N, nlog L-22N?log N |

then for sufficienily large .1, we can apply lemma 7 to each of the pairs of
numbers o, log o and &, log =, and thus there exist 2. S,€ A, satisfying
the nequalities

(16) =D Gyl NN
(17) Ho s t=deg Si=nyvy,, =1 2:
LS LSy nlmmenn, degQ(L, Sy D)= i
where v, 1, ... are positive constants, not depending on n, L, N, 2.

Let 7 be sufficiently large, N¢N,

(18) g=X=[VN| q=[Z#Nl S=[DNL .lg=2,
Q(A, B) = ((5. X, ¥):8,x,y€Z, O=s5=A, 0==x, y=:B),

ifu ".‘_1 . ) . g
(lg) Q(Z) = Z 2‘ DJ’.‘, fom z* g:u ' mﬁ)" '{)J':J. m = 2 !')R.I.m_f ]U:(-{t S
k=01 m:- 0 t=:1)

where the numbers D, |, will be selected later. 11 is evident that

bl

(20) g(sl(x‘lrﬁ.v) = Z ‘OF.',I.m Z T ( (\ + r} P)h

Edm 0 (3 - 5")‘
}ﬂqs o« {!‘ +m ﬂ)a .rx (T*)mx Sy (z,r;!)m_\,' i

For non-negative integers x and 1 the right-hand side of this equality is a
poiynomml in loga, z, 3, * and 2#. With the help of lemma 4 equalities
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(14), (13) and the defining polynomials of = and g we express the powers
of, o, o and B, not less than », »,, », = dego and », = deg 8 correspond-
ingly with the smaller powers. We have

g9 (x+By) = ys " Prlog a) X P, (log &) 77X .

ri—lea—1 gz r=1s—1

. Z Z Z Z Z A;’ 3_';’“""]0{{"0’-"z“"”ﬁ“’wﬂzﬁv,

u=0v=0p=0r=0w=0
where

(25 i = Qo+ SHX=3}*N, @=S+¢+y.,4X=p;3N,
(s, x, ) (S, X),

(22) ; ;l’.;:;,r,ur - Z B:,,:I,f,r, w (k, ,f, i1, t) D;.—_ fom, b

k,Iom,t
sxy (k f nI {)GZ 18.\)\ (k;-A‘,t)E'E-'(ZN)V"FN.
A-.
By lemma 5 there exist M = (t,‘hLl)2 (go+1)* numbers D, , ., satisfying
the m = (S+ 1) {(X+12rv,», v, (g + 1) conditions
APty =0, (550e2(5,X), u=0,...,9n—-1 v=0,..,9-1,

@23) p=0,...,¢+1, r=0,..,r—1, w=0,...,0-1,

while
Dyt mi€Z, O=max Dy, .,/ <2 Nys#Nmat-m |

Indeed, from (18) it follows that for A=J, also M=m and

m g A3 N¥ 10 . oa
—_— = S, /l_‘:/L /1,
M—m AENE— g X5 NP i
thus
(24) O0<D = max |Dy; , | = (A Ny1N,
Lel

&
;k.f.m(z)z Z‘Dk.!,m.fz"l' k:()l "'Fqur I;m‘—’oy---;f};
t=0
and let 4 () be the greatest common divisor of these polynomials. Put
(25) :k.!. o (2) = (’)};.-’.m (2') y (Z) !
s
Ck. [ w!(..‘,m (]Og GC) = 2 Ck,!, i, ¢ log! @ .
=0

Then from (17), (19), (24) and lemma 3

(26) Ck,!, m, i EZ’ O =<ilax ICJ'i,i',m,.I'[ = (‘a N);"eﬂ N '
q‘:’g}.zN, },2}.33:};2.

8*
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Let
(27) J(® = plloga)tg(z) = E“ 2 Cro o 25 A1 EN2
) E=01{,m-0

From (23) we obtain
JOE+p) =0, (5%1)€Q(S, X).
Now from (18), (26), (27)
ity X (zmx—ByYtf(mdz|
max 1f(2) = i - j’ I { ] ‘ =

2= (1 418D V7B N T 1 xy—0lT— \—ﬁv T--%

] . jrl=a2N
2 N [(1+|5I)I/FN +1+(1+8DAVN ]"“ DHEHh
BN-(1+|8D2VN

g+ 12 (g, + 1) Ders @1 (G2 N Yo ernall+1@ g2 N -
(28) <(ys VAN) RN N (G NYy—7e BN o) mf
By Cauchy’s formula this implies

inax |3 ()| = GENIEN Ny na 8N o (3 NYy s BNE
!zizrﬁﬁgﬂﬁh
s5=A=

<A

thus
(29) SO EBMI=(AN)ENL (s, 3, 1) €Q(S,, X,) = Q
S, =2N, X, =[VBN].

Let @, ., be the number which arives from f@© {(x+ By) on replacing

log o, of and of* with o 5, +; and Z,. Evidently, &, .  is a polynomial with

rational integral coefficients in the algebraic numbers «, 3, 3, &, and &,.
From (18), (26), (29) we obtain, that for (s, x, V)EQ1
30y L&, =(ANy1e®N  deg. D, degs®, =y,2"N,
dege D ., =232N, deg. D, . =AMEN
Let L{x), L(B)=yy. 1T @, <0 then lemma 1, (1), (17), (30) give us
(D . | = ((2 Nyns 22 Ny 1 —ramdega: deg gman oo FEN (BN,

ALY L) N Ny N G disi, (5%, P)EQ,

deg,. ®

55

On estimating with the help of (13) and (16) the numbers ¢ 23 25—
—1ogd - u??+ei we obtain from (30) the inequalities

(32) 1@5.:€._\’_f(5)(x+ﬁy)i SN gz (S X, 1)E0,.
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Now fram this and from (28)
(33) [P, = N BN L (G N) BN < () Ny s N7
For 7 =4z =7, the inequalities (31) and (33) arc incompatible, therefore
D=0, (5,x,¥)el, 2=,
and this, together with (33) gives
[fOGA BN =NT=8V (s, x, y)eldy, A=l

Using Hermite's interpolation formula we obtain

2 =2FAN ’ il N T‘—X—ﬁy T—2
:flzl."l
NESI XA 1} %i r_i“—l’_ﬁ W o= X BYF 4o
lx}=Os h s12xi abmo\o—a—0f 0—2 )

X+ dy—e =05 ;

=22 [—LJW(SHM ] Cene PN - BN (4 (14 VRN YV =
RN_VBN —1

(34) =(AN)"BN T o =20
Let

(35) Q = 32 N372

then

Gelg+ D=1 2IN* oy,
s5/2 N2 FE2 pJan

therefore, according to (34)
(36) S (/QI=GN)y=2 x =01, .., (1+9* (1 +g5)— 1.
Now we use lemma 7 from [2]. Replacing ¢,— 1 with g, for

p=g+17, e =exp((+mp)Q); Lm=01,...,q,
Apia = Cor: Q7% Q=@+ G+1)-1,
we obtain

Covroul =Q%(go+ 1) (g + 1)* max |f[ ]i (gy+ 1) e +1AD 2 QUG .

Dz=x=6y

Tre o |
(37) + IMax —[H (z.—wa)-fm] .
0=i=q, | f lﬁ:i Jz:%
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Let jmy, —m,i+ {1, — L] =0. Then
; !24'"1‘.'13:; Ig+ g 3

oo = wa—woy] =1 % e U b il L], Img =AYN .
Asf,m=0,1,...,¢ then from (I8}, (35) and lemma 1 we have

Iy+m
PR L LT
Q

=y, Qg
Now

el -

: d ... Fla— 1 —q —£ |
= I Goldo+1) I(‘?n“*‘ e )(-’-ﬂo‘-ﬂ’e) 4|
=t e=1 Lol
: fg=0 e=eg
1 qo{p=1)+i
—pop=Dgote (1 -
min }jew, — o,
oAg

=g 2" Q" yz V" = (AN
and according to (25), (36) and (37)
(38) s, 0, m (108 @) = |Cp 1l = (A N)7720 8 N2,
O=<k-=qg, 0=, m=gq.
Let D(2) be the defining polynomial of J. Then, because of (13) and (18)
(39) 1D (log )| = |© (loga}—D ()i =

_l FL

=[loga— | L (D) (lloga| + 1y =N *

The inequalities (26), (38) and (39) imply, that the conditions of lemma 9
hold thus P(z) and w, , ,,(2) have a common zero and as P(Z) is irreducible
it divides all the polynomials wy ;. (2). But these polynomials are relatively
prime. This contradiction shows, that .1, < A5, We have only to put A = Al

LEMMaA 1. Let m=1, o, ..., w,, be transcendental numbers and each
of the numbers e, ..., m,, be algebraically dependent with w. 1f O¢A,
Plzg, 2y, oo z20€ZL ]z, 2., - ., Zpl IP(B, o, .. o) =e 2 02=0,

then there exists Q(z,)¢Z [z, ] such, that
(1) 1Q (ﬂ)l)l =e 2L (P)?o prLdeg P
(2) L (Q) =L (P)rens deg P
(3) degQ=y, deg P,
(4) if Q(w,) =0, then P(8,w,, ..., w,) =0,



ALGEBRAIC INDEPENDENCE OF SOME NUMBERS 11 119

where v, ..., 7, depend only on 6, w,, ..., o, but do not depend on the
polynoniial P.

Proor. By data, there exists a polynomial @ (x, v)€Z[x, y], PZ0,
such that D{(w,, ,) =0. Let X be the set of polynomials R(z)®0, R({z)¢
€Z[z,0, 0, ..., o0,_] for which R(w,)=0. It is not empty, as D(w,, 2)
helonq% to if, therefore it contains a po]ynomidl of the jowest degree. Let it
he Rn (2), deg Ry, = »n, o' =, ..., 0f) be it’s zeros, and r=r(@,0,. . . .,

Loen, )20 be its leddmg coefficient. Then

Qm = rrnm H P(wfri}’ ‘QJ (!)1, e mm ~1)‘ ”m = degzm P

=1
is a symmetrical polynomial in o}, ..., w3, therefore g, is a polynomial
with rational integer coefficients in the dr;,uments oy @, , Replac-

ing these arguments with 2,2, ...,2,_, we obtain Q,, ,(z,, ..., 2, ) and
if Q. -1(0,w,, ..., 0,_1)=0 then for some index z,

P& w, . .. 0,,00)=0

and because of the minimality of the degree of R, (2) this equality takes
place also forr =1, ..., », ic.

PO, m, .., ,0,=0.

[f we produce all the efiminations, we obtain the polynomial Q(z,)¢Z [z ]
(in the last step we climinate @). Evidently (1), (2), (3) hold.

Lemma 120 Let P(yeZ[z), P20, n,=degh, L,=L(P), ¢C If
[P (D) = 167" 170 L3210

then there exists Q {z)€Z [2] which divides P(z) and is a power of an irre-
ducibie polynomial and satisfies the inequality

1@ (D) < [P ()] 1670 papn 3o~

Proor. Let P (z2), ..., B@)¢Z [z}, ( n By =1, (=], P(z) be a power
of an irreducible polynomldl m;=degP, ;= L( ), i=1...,5

P@y=aP ) ... R(2), 4ck.
IT the inequality

v]}T "— i1

(A1) P ()= d 0T T o L(PIPY T, i=1....5,

would take place, then by lemma 3 we should obtain that
'P(C)I - H 4 _.m‘-(nu- "")mf_mf L;;-nu L(P,J"P;-)_miz:
=1

2= 40 150 (20 Lo)2=M0 (2% Lo) ™0 > 161 o L2210
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Thus for at least one i =i, the inequality (41) is not valid. Let Q(2) =
= Fi(2), Q@) = P)QQ), n, = deg Q2), 1, = deg @, (2). Then
|Q1 (:)| :_,4—n,n= Hg—n-_- (2”., L")E—nl—ng (2”“ Lu)—m} Iﬁ—n‘-’n ”(‘I—n;, L;J;—:mu
because otherwise by lemma 9  and ¢, would have a common zero. Now
RN = [P Q= 16%0 s L= [P (L) .

Proor oF THE THEOREM. Suppose that the theorem is not valid, ie.
that there exist polynomials

@42) ARy By BGY), RuyveZinyl, RERAERZD,
for whicit
(43) A (oga, 2" = P (log =, ) = P, (log «, §,) = £, {log=, §,) = 0.
Let
(44)  NeN, S, =g, =[N*iogN], ¢, =N, ¢=[log’ N},
X_; = [y Niog N},
where 3 is some positive number, which, as well as the numbers 3,1, .. .,

arising later does not depend on N. Let also

f(z)—z° S zcm, K@+ mdzpn (2 4 o),

=0{,m=0n-
r !
CA‘,I. moan Z Ck,.i,m.n.! |0g &y
=0

where the numbers C, , . ., will be selected later.
For x, v¢Z with the help of (4) we obtain the equality

f(s}(2x+2ﬁy) = z C.ﬁ',!’,m . Z -!—1‘ Cﬂl (2\.—:—')6 V)’f ar .

K domon o1 toatog=§ 0'4:10'3

(T4 m By=loger o - w2 0+mA (83 (Pn (2) () _

= Z Ck,!,m n Z T C”'(Z‘T‘)ﬁ}')" e

kI, mn al+optug=s Tyl 0'3
R (! Jm {g)cg ]Ugug o ,xmxw (Bmx+20)+ 52 2my Z’ Aa,u, e, 02 63 a; X
2a+4e=2n+u;
(46)

Just like in the proof of lemma 10 with the help of the equalities (43)
defining polynomials for « and 7 and lemma 4 we express the greater
powers of o, o, §,, &,, «x and f by the less ones. On denoting by p, (x)
r=1,2,3,4, the leadmg coefficients of the polynomials B(x,y), r=1, 2, 3,
4, we obtain the equality



J\LGI:.BRAIC ['\TDEPI:.\ DENCE Or° SOME NUMBERS i1 121

FO2x+28y) = pMo P (loga) M B (loge) M P (log o) M P, (log a) -
. Z Z E;:;’y ]ngr wopgTobAT AT éa‘l é;’ fjfs
=0 r

Here the components ,, 7., - .., r; of the vector T are non-negative integers
less than or equal to y; and g¢., M, ..., Al, are non-negative integers and

(47) Go=1N*log N, M,=y.NlogN, k=0,...,4.

The Egy (their number is less than or equal to m=(S_,+1)
(X _,+ 1}g, %) are the linear forms over Z in

M=+ g+ @+

parameters C; , ,, . For sufficiently small ¢ <1 the inequality M =2m holds.
We use Jemma 3. In our case, according to (3), {44), (45), (46) and (47)

A = N MNilog N .
therefore there exist numbers C, , ,, (£ Z, satisfying the conditions

Esx\!—o, Uﬁrﬁq_!, 01-:7'",‘-',1' =¥ (S,\ y)E (S 1» ‘—l)'

(48) O=max [Cy | =2Nr NN L]

Thus '

(49) SO 28v=0, (5,x, e (S_,.X_;)=1_,.

Let

(50) Xy = [Nlog®?2 Nlloglog N], S, = [N? Io.c;:"*"2 Nioglog N1,

Gl X,=2°X, S,=28, p=01,...;0,=9(S, X,).
MaiN LEMMA. Let p=0. If N=N, and

(52) SORx+28vy=0, (s, 5, ¥)€2,.,,

then

f(s) (2x + 2,3 _V) = 0’ (S! <, y) E!‘?ﬂ -

Proor. Let T, =277t N2, £ be a parallelogramm with apexes at the
points +2T, +2'I ﬁ

(53) Fr, () = H sin - @—2r f+o), 1, () = Fr, ([ Q).
r——-Tp

The furtction F—,-p (z) has the order of zero equal to 2¢ at the points

2=2rp~m=20 h=0 41,42, ...; r=0,x1,..., iTp,

thus the function @y, (2) is analytic on £, and in the open domain .2,
bounded with £Z,. According to (52) and (33)
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PFLx+287) = 0. (s.x.1)€2, ;.
thus for ze £
N - “
oy ax—2gp)Pro !t Pr (D)
Dr (2 = 5— b T [__ X2y R
2= = T
Because p(z+ ) is bounded on £, this, together with (44). (43). (48),
(50). (51), (B3) gives us
(1B (Kp 41+ X, )Xo D56 1m0
niax Dy (=T, e '
-{1+.;'—':;x,,_-.1| 7 (2 =y p[ - ——(]+|ﬁ')Xp -
Lo Tyt ra Tp)?'n NIog N pviai Tp o o= 14 8P X, 128, _ilog Ny Tt log X - p* |
(34)
Let o= min(l, {3|/2, |®];2). Then in the circle o= z—2x—23¥i,

X, veZ, each of the faclorq of Fr_(z) is bounded from below, thelf,fme from
(53) and {54) we deduce that

inax ”’(zn = = 8P Xp_*8p logNtw T2 og Nopyi+ g Tpg |
ERE SRR e

0, 1y X,

= max [ 2x L 28 V)i =sloSpemmiNp B8y slee Noon Tyt og N piE

s
P
(5, %, ¥4y

(55)
camexp {7 NP 102 N —y, (» Nlog N 1R (N2log N - 1)log N +
+ 1 4N Tog? N) <exp (—y,4 N*logh N},
(56) ga=eXp (=1 8P NYI0gP N), p = 1,2, ...

Let Q(x, 3) = Q(6) while = and 3 may be be expressed by @ with
rational integer coefficients. Then f‘s’(?\mL 231) is a polynomial with
rational lilt(.g[!!‘ coefficients in log a, o, 2 8,, 4, & From (4), (44), (46),
(48), (50) and (31} it follows, that the length of this polynomial is less than
or equal to

3 4P o N o lon N
(37) Sj—_." Sp Xp = N (plog ah® Lilog log N
and its degrees in all the arguinents do not exceed

27 N2 log® 2 Nlloglog N .

Using lemma 11 we obtain a polynomial Q(z)¢Z[z] which, according to
(59, (56) satisfies the conditions

1Qlog a)| = exp (— ., 82 N log* N),
deg Q =y, 27 N*log** N/loglog N,
L(g)=exp (y.; 27 N2 (p+log N)¥* log Njlog log N) .
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We shall show, that Q(log«)= 0. If it is not so, then we apply lem-
ma 12 to Q(z). The condition (40) holds, because
16—t n(—)—nu L%"‘lﬂn = |f— v P Nllogd N (?25 I N2 log;;‘,fg N)—Tm 9P Nz Ioga;’z N,

o N~ 2327 vos 4P N4 (p £log NY/log log N - p—vzg 8P N1 logt N N=N,.

Thus there exists a polynomial @,(z)¢Z]z] which is a power of an
irreductible pelynomial and

|Qy (fog ) <exp (—yq 87 N log! N},
deg Q== v 2P N? log®* N/loglog N,
L(Q,) =298 Q [, (Q) = Nvzs 2 N2 (p+log N)"*/log log N

Let Qu{2) = q @), q(2)cZ[z], reN, ¢(2) be irreducible. Then
g (log )| <exp (—y;s 87 r~! N'log! N},
(58) L (q)= {2498 Q L (Q))V" = Nrwo 2F r=1 N2 (p + log NY¥/log log N .
(39 deg g=v,, 2P r~! N*log*? Nflog log N .
Let ¢ be the zero nearest to log« of ¢(z). By lemma 10
(60) |log x— 3| =(deg g+ log L (q)/log log L (g)) ~' ¢eg a +iog L @log log ()"
At the same time, by lemma 8 the inequality
llog 2~} = | (log 2)| (2 deg )59 L, (g) e ¢ < ¢=7ou 871 Nitog? N

holds, which is incompatihle with (60) because of (58) and (59). Thus
Q(logx) = 0 and by lemma 11

FOx+283 =0, (5%, »neL,.

Because of (49) for p =0 the conditions of the main lemma hold, there-
fore at all the points 2x+28y; x,y =0, [, ..., all the derivatives of the
function f(z) vanish, and thus f(2)=0. But p (2} and the functions e*+19z,
k,1=0,1, ..., are algebraically independent over R(z) therefore all
the numbers C, ; , = 0, and because the number log « is transcendental all
the numbers C, , , ,=0. This contradicts to the selection of them. The
theorem is proved.
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1. In what follows we suppose the knowledge of the theory of the
Young-functions as well as the theory of the Orlicz-spaces generated by
Young-functions. ([1])

In [2] we have introduced the notion of the conditional L%-norm for
a Young-function @ as follows:

Let X be a randoin variable on the probabiiity space (£, <f, P) and let
{Fced be an arbitrary o-field. Consider the set of the random variables y
defined by

Fu¥ = {y :y =0 ae., F-meaurable, £ [(D [ Ed } | Lj—]ﬁl a.e.}.
3
We say that X¢L% if F¥'¥ is not empty and in this case we put
IXUT = ess. inf. F¥?
We define | X[[7 = + « if F%¥ is empty.

The existence and the uniqueness of | X|F is not in question. The
random variable | X[ has the properties of a norm a.e. in the sense that
if XcL then

(a) for any real ¢ we have eXeLl and

leX|(@ = |el I1IX]E a.e

(h) ”XH;, =0 a.e. if and only if X =0 a.c.

(c) it yeL% then X + YeLZ, moreover,

HX + X7 <Xl + VI3 ae.

he property (a) is satisfied in the foflowing more general siteation, too:
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(a) tet Y=0 a.c. he an 7F-measurable random variable and suppose
that XeL% then XYelS, and |XY|F = | Y| I X7 ae.

These notions will be useful whenever treating some properties of the
so-called BMO..-spaces.

2. The following lemuma, which is a direct generalization of an inequality
of Garsia, will help us to establish an interesting inequality in the theory of
the so-called BMOg-spaces.

Lemma 1. Let (X,,7,), #=1, be a non-negative submartingale and
let @ be a Young-function whose conjugate junction ¥ has a finite power ¢.
Then for arbitrary o-field {Fcf, we have

X7 =g 1 X7 ae.

Proor. Let y=0 a.e. be an “F-measurable random variable. Then trivi-
alty [ Xn

t4
arbitrary 72=0

,-'j-n], n=1, is also a non-negative submartingale. We have for

X B
}LP[-__.E_}}U‘;{—]J_—: f PdP)F Y, where X* = max X,.
? i=mk=n
-
T

This inequality can be deduced in the same way as the classical inequality
of Doob and it holds also with

X;\.:min[x"'-,a], k=12, ...

14
where a=0 is arbitrary but fixed constant. Thus

- . X -
}.I)(X;*Ew).!Cf)—sE(] --—”~dP[(}‘),
Ky=s

where X* = max Xj. The conditional distribution is taken to be the regu-
1=k=n

iar version of this notion. Integrate this inequality with respect to the

measure generated by @ (), the right-hand side derivative of @. Using at

the same time the Fubini theorem we get

xmn Xr& .
E[f idq'(ﬁ)[\}'}-_ccﬁ[—)%‘- f d¢(i.)[(j—F] ae.

i 4]

which can also be written in the form

E(¥ (p (XNF)=E (X, (XD T) ae.
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Use the Young-inequality for the right-hand side to get

—~ - X A p
E(¥ (p (XF)F)=cE [@ [ “]|r:f]+cb (¥ (6 (X)) ae.
cy
where 0= ¢~ is an arbitrary constant. This gives a.e.

(1—0) E(¥ (¢ (X)L F)=cE [«s [ :

Xy
, ] Il?] ]
4
Now let ¢ t 4 «=. Then we get

o-arle ()l (5)7) -

Apply this with ¢ = /¢ and with ¢X, instead of the submartingale X,. Then

ES
gyl E [lp [(f [X ”1 -,(—J l—-E [fﬁ [X"-] p}f] a.e.
g qy q v

Putting v = ||X_,,[!'.f+p, wlere =0 is arbitrary coustant, we get a.e.

ol R )

Remnark that
(@—D¥ (5 (X)) =P (x).

[ [q(ux“" +P)] ]fl_

This means that for arbitrary «=0 we have
IXENE = q (X7 +e)
and finally letting s —0 we get a.e.

XIS = g 1XAHT

From this

This proves the assertion.
In the paper [2] the author has introduced together with J. MoGvoréDi
the definition of the BA0e-spaces. These are the following:

Let X¢clL® be a random variable and let (F,1), n=10, be an increasing

sequence of o-fields of events. We suppose that F. :cr[ U Tn] =4,
=1

the basic o-tield of the considered prabability space ({2, <4, £). Consider

the martingale X, = E(X|F,), #+=0, where we suppose that X, =0 a.c.

Let @ be an al'bitrm‘y Ynung—function. We say that X BMO,. if

SN = Xl < e
nel



i28 BASSILY, N. L.

and in this case we define the BMOg-norm of X to be

I Xilzaio, = ﬂ plX— X, len

u
It is easily seen that || X|lzmo, is really a norm.

Before applying the result of the preceding simple lemmua to the
BMQg-spaces we have o add some minor remarks.

Consider the preceding regular martingale which corresponds to X¢€
£ BMOy. For arbitrary indices n=k=1 let us also consider the random
variable

F
X — Xy -y [l8”
We show that this random variable increases a.e. in 7, and its a.e. limit is
X~ X7

[n fact, with arbitrary (7, -measurable and a.e. positive y, the sequence
@[J_XI—XR_Q], ! :ﬁ,k—l-l,
‘}]

if it is integrable, forms a non-negative submartingale. Consequently, for

every ¢ Ff{;f";_xk i and for arbiirary n=k=1 we have

. Xp— X KXo — X5
E [gp []__ ’_ll] ][?5-] =E [ AXpay — X ] ](1}?#]-5 L a.c.
‘}J
it follows that
1~ Xy [FF = 1X oy — X 3% e,
Thus
lim X, — X,

H—s 4 oa

exists a.e.
Let yéFﬁ r‘:" . Then using the Jensen inequality we have a.e. for
—1
n=fk=1

(o[ oo £

S R A B T e S A T

r
I

We deduce that for arbitrary indices #=>k=1

7y
},EHXn_XIr—IH'J”' a.e.
So,
y= lim X, — X, [Tx

e+ an
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and, consequently,
1X — Xjoylldo lim X, — X, [[3%.

Fime - oo

We prove now the converse inequality. Let for this purpose £=0 be
arbifrary. Then with arbitrary A€(F, from the Beppo Levi theorem we

obtain
X—X, -
fE q_‘, - I k 1| = |(3¢_-k dP —
lim X, — X, {5 ¢
Rt =

A

IXI_XA'—lI
. o —— AL WF
= lim fE ( lim ”Xn_x;.-—11|;':"+s [(Fs dpP =

It T

#

< im sup fE qﬁ[ X=Xl ]1@; 4P <P (d).
e X, = Xy —1lla*+ &

This means that with arbitrary ¢=0
1X —X,oy 3522 lim IX, - X, [Tx+e a.e.

Fis 4 o

and so
1X = X yllF < lim X, — X, [T* ae.
L
Comparing this with the opposite inequality obtained abeve we finally get
1X — Xl = lim X, —X, 3% ae.
- B Y

We are now in the position to formulate:

THEOREM 1. Let @ be a Young-function and suppose that ifs conjugate ¥
has finite power q. If X¢ BMOg then

[Xllsmo,, = ”?L_‘? Hi‘;‘? | X=X ’—1|HTH._ =¢|X|l8mo,, -
Proor. Since

sup [ X = X1 sup sup X, — X, |7
I=1 1=1 || k=! o

the left-hand side is trivially valid. For the right-hand side by Lemma 1!
we have for the non-negative submartingale | X, — X,_,|, £={, that

H max | X, —X,_, |”G=aﬁq X, — X% ae.
o

I=k=n

9 ANNALES - Sectio Mathematica — Tomus XXV,
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Consequently, letting 71—+ + = and taking into account the preceding re-
marks we get

fsup | X — X[ 7= lim )X, X 0T = g X~ Xolet ae
kel [ o 4 oa

From this also follows that
fsup [sup | X, — X, 1i7 - =qXlsvo0,
el kT )

This proves our stateient.
ReMmArKs 1. It is easily seen that for arbitrary /1=1I=1 we have
—XE = sup X - X ]
LET S8

Front this by Theorem 1 we deduce that
HXf_X?‘q“w"’qﬂ)ﬂimru a.e.

Following GaArsia we can introduce the notion of the increasing BAMO.,. (B)
sequence (cf. Garsia [3], p. 66). According to this notion the preceding
inequality can be formulated in the following manner:

H X¢BMOQO, then the sequence of the maxima {X*} is an increasing
BMOg (]| X||sm0,,)-sequence, provided that g, the power of the conjugate
function ¥, is finite.

2. If both @ and ¥ have finite power, {hen with some positive constants
cs» and C, depending only on @ we have by Theorem [. and by Theorem 9.
of [2] that

cw | Xllsato, = -ir;ull) .'Iskuli} ]X.‘:_XF—II-I::E;' “4Co [ X][BM0O, -
11 . = X e

sitce Theorem 9. of [2] proves for any X ¢ BMO.,, where & has finite power,
that
e I Xl s3o, = Xllsyo, = Co | X|smo,

3. Under the conditions of the preceding theorem we also have
WXHe =g XlBro,, HEN.
In fact, putting { = 1 in the first remark, we obtain
IX*E" =g 1X Y s30,, -
By Proposition 2 of [4], we have for every ¢=0 arbitrary that

Elol ifn [ F | =1 ae
IX3E e )

[ [‘?”XHBMO Jh?’l]ﬂl da.e.

and, consequently,



SOME PROPERTIES OF THE BMOg4-SPACES 131

Taking the expectation we get

. X _
Ele{, um—lm:]] =t

From this we deduce for every arbitrary £=0 that
X3 e =g XlNario, + ¢
This proves the assertiomn.

3. Now we turn to the special case of independent martingale differ-
ences. Qur aim is to generalize a result of MARCINKIEWICZ and ZYGMUND
{5]. They had shown that in this case there is an absolute constant, which
is convenient in all the maximal inequalities. They proved that the L -norm
of the n-th maximum and that of the n-th partial sum itself are equwalent

For this purpose, first we prove the inequality of BicKEL in a condi-
tional form, which is convenient for our aim. {cf. [6]).

LEmmaA 2. Let ¥, Vs, ... be independent and symmetrically distributed
random variables with zero mean, and put X, -- Z , HeN. If g(x) is a

non-negative convex function defined on R then tor any o-field CF < F, we
have
E (11113_)_{ g()(,._)ll}‘)ﬂfZE (e (X ) F) ae.,

where F, is the o-field generated by ¥,.
Proor. 1t is enough to prove the inequality
P ( max g(X,..)::_-t]f}‘) =2P(g(X)=H#) a.e
I=k=n

since taking the regular version of both sides and integrating we get the
required inequalily.
Define the stopping time

linf (k:l=sk=n g(X)=1), if max g(X)=!.
Il =k=n
P =

TR if max g(X,)=<t.

1=k=n

Then
P( thax g(Xk):-!lcg-) P=n{{F)= D Plr=kiF) =
k=1

= i Ply=4k, g(X,)~gX,)=0F)+ i Plr=k, #(X,)~8(X,)<0F)=
k=1 k-1
“‘Z Plr=l, g(Xo)=1F) :2 Ply=k, a(X,)—#(X)<0[F)=

= PX)=TF) + 3, Plr=k 8X)—gX)<0[F) a

g+
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To obtain the asserted inequality it suffices to show that

> P(v=k g(X,)—g(X)=0lF) :‘E-'}Q—' Pr=n[(¥) a..

k=1
By using the support line theorem for convex tfunctions with some A(x) we
have for all x, y¢R

2 g (=1 (X) (=)

Thus
n . n —
S P =k g(X)—g(X)<O[F)=> Pr=k 2(X)(X,—X)=O|F).
k=1 k=1
This is equal to

SHP =k, 2(X)<0, (X,—X)=0lF)+

k=1

+P(r=k A(XY>0, (X,—X)<O0/F) =
- % Plr=k A(X)<0/F)P(X,—X,=0)+
o

+P(v-—k, ?.(X,‘.)}OVF)P(XH—X,‘.{O)}.

Here we have used the fact that the partial sums (X,— X)), k=1, ...
are independent of (< #,. On the other hand

since the X/-s are also symmetrically distributed. it follows that

,2 P (,, =k, g(Xn)—g(Xk){m(}a)E

n
= ;‘ g} P(r=k 2 (Xk),i_'[}i(:j‘—) = }2 Pr=n|'f) a.e.

which proves the lemma.

AsserTioN [. Let ¥}, ¥, ... be independent random variables with
zero mean, @ be a Young-function with finite power p. Denote

X,= 3V, and X%= max [X,], neN.
i=1 Ish=n
Then we have a.e.
E @ (XHIF) =20 HE (@ (X DIF) +E@ (X)) ac.,

where (Fc(f, is an arbitrary o-field and 7, is the o-field generated by Y,.
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Proor. It is easily seen that
E@XHF) =E ( max'tpqunﬁ) a.e.
l=k=n
Let @ be defined by the formula
@ (X) = D (X), ff X=0
@(—-X), if X<0.
Then & is a convex function on R, it is even and

&' (X) = B (IX1).
We have to prove that

E(max & (X)IF) =21 (E (@ (X)NF) + E@(X.D) ac.

1=sk=n

It is known that there exist random variables Yy, ¥, ..., ¥, such that ¥;
and ¥/ have the same distribution function, i =1, .... n | P
¥y, ..., ¥, are independent and Y,—¥; are SymnlLtrlcal]y distributed. By
using Lemma 2 we have

(N E ( max @’ (S,‘.)|[7) =2E(P (S )F) ae.

l=h=n
where
Snzzz,., neN, and Z, =V, -V, (=12, .. .,n.
i=I

By the convexily of @ we have

@ (S,) = D(IS,[) = 2
e
onsequently,

s>l fo(5n)efe 5 7))

2) = 2{E@ (XD F) +E@(X, D)} ae

since the partial sums >' ¥/ are independent of 7, further ' V, = X,

i=1 i—1
H
and z ¥/ have the same distribution function. Alse, we have a.e.

f:=1

E( max &’ (SA.)|C;TL) =E (E (Ilgg;n B (Sk)|l}‘n) ](}‘-)a ( max @* (Xﬁ)|1gt)

1=k=n =k=n
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where
Fa=0a(V, ... 7))

Here we have used the inequality
E(mdx E(P (SYHIF )) = max E((ﬁ’ (SIF,)

1=hk=n
and we have applied the Jensen mequallty:

E @ (S)F)= (ES|F) = & [ > v - o ox.

Then it follows that
{3) E (max @ (S)F f) =E{P(XHF) ac

btk
So, froni (1), (2) and (3) we get
E(@XWNF) =27 {E@ (XD F)+E@ (X)) ae

which proves the assertion.
Note that the preceding assertion is valid also for p= 1.

AssErTiON 2. Under the conditions of Assertion 1 we have
(F - i iy
IXENT =207 | X 05 ae

Proor. On the basis of Assertion 1 we have for every JF-measurable
and a.e. positive randorm variable y that

o)) o ()2

since {X,/y,¢F,) is also a martingale. Thus we have for =0 that

E
oyt )
2 ”‘Xn“'f’ +_F

oo 7)ol s )

IIX,JIm +e X Ne 46

which gives that
[ () )
(||xn||‘gf+s) 9p+2 =1,

and, consequently,
UXHIE = 2072 (IX E +e) ae.

which proves the assertion.
Note that the preceding assertion is also valid for p = 1.

THEOREM 2. Lef X< BMO,. If @ has a finife power p and X is of the form

X=3v,.
i=1
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where V. Y., ... ure independent randem variables with expectation O, and
Fo=o(Y, ... Y), n= 1.2, ... then there are constants cq and C,. such that

o ”X”B.\IOFE,‘SIUII) "i“]? IX;.-_X;—1|!|‘?|I =Ca [| X[ 810, -
i ([ o |1

Proor. By using the last assertion and in the same way as in the proof
of Theorem | it follows that:

1 XY ario, = Sup sup 1 X Xmla;ff' = 2072 Xli5m0,, -
E3 2] L]

Also, by using the result of Theorem 9. of [2}], according to which
o [[Xl|saro, = WX fisio,, = Cu | X||pMo0, -

the theorem is completely proved.

Note that the preceding theorem was proved by supposing only that
p is finite.

Another conscquence of Assertion 2 is the conditionat Marcinkiewicz —
Zygmund incquality.

THEGREM 3. Let Yy, Ve ... be independent random variables with zero
H

mean. Denote X, = %' Y and X5 = max | X, neN. Thea for aity p=]
i1 | mk=n

we freve with an abselute constant A thal
IXEN = A X ae.
where F = F, is un arbifrarv o-field and F, is the o-field generated by Y.

The proof of this assertion can be made in the same way as in the
classical case. (cf. [3], or [7]).
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ON THE L7-SPACES WITH GENERAL YOUNG-FUNCTION

By

N. L. BASSILY
Department of Probahility Thenry, L. Edtviis University, Budapest

{ Reccived May 16, 1950 )

1. In what follows we suppose the knowledge of the theory of the
Young-functions as well as the theory of the Orlicz-spaces generated by
Young-functions. ([1])

In [2] we have introduced the notion of the conditional LF-norm for a
Young-function @ as follows:

Let X be a random variable on the probability space (2, <#, P) and lel
(#ccd be an arhitrary o-field. Consider the set of the random vraiables »
defined by

lj—:)(' T Ay oA ".-0 a.e.., . j—-measurable, E @ |Xi |l j“ = ] a.e.}.
7y
v

We say that Xe L% if (%7 is not empty and in this case we put
I X7 = essinf Fe 7.

We define || X[3 = + o if (Fx'7 is empty.

The existence and the uniqueness of |]X||f,f is not in question. The
random variable [ X||3 has the properties of a norm a.e. in the sense that
if X¢LZ then

(a) for any real ¢ we have cX¢ LT and

leXF = 1l IXIZ ac.

(b) 1 X|Z = 0 a.e. if and only if X =0 a.e.

(¢) if YelL% then X+ YeL, moreover,

IX+YIZ=IXIT+IYID ae

The property (a) is satisfied in the following more general situation, foo:
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(@) let ¥ =0 a.e. be an : F-meaurable random variabie and suppose that
XelL? then XVeLy, and [ X Vi = | VI X|5 ae.

2. In this paper we shall treat some properties of the Li-spaces. Firstly,
we prove the completeness of the L7 -spaces.

We say that XEL. if | X = E(X] | ) Is finite a.c. 1t is easily seen

that in case XFL, the random variable ||X|[{ is a norm a.e,
We also need the following

F g
ProrosiTioN 1. L Ly, moreover,
YN o N IF
co IXIT = BX ]I
where ¢, is a constant depending only on @.

Proor, Suppose that XeL%. Then there exists =¢ 7%~ such that
PP P

Let x,>0 be such a number for which ¢ (x,) =0 holds and put

14+ Xy 7 (X,)
iHere ¢ denotes the right hand side derivative of o,
I't is easily seen that

P = [ @)= (r—x) " 7 ().

o
Consequently.

UREE AR

[IX|

Since

-

\] X,
we get
and therefore, !

[I);Hfl ({(110)]5[(b[|Xl]|fJ+\" Lln "

We deduce that E(].X]| ;C}“—)::.—; and so XelLy. Consequently,
l{.‘(ﬂ

iF . =
co [|XIH = 1iX]15 .
and this proves the assertion.
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We deduce the following
Propositiox 2. Let X¢L¥. Then for e=0 arbitrary | X|[%+¢ belongs
T F

to JFx

Proor. Consider the decreasing sequence y, ¢(Fx", n=1, 2 . such
that y, + ||X|%. Then for arbitrary £>0 we have that v, + ¢ FXY. In fact,
by the monotonicity of @

elo[ZL]im)=E ([TYiw)=1 ae

and at the same time
oy y,+e = |X[[3+e.

s o

Then by the monotone convergence theorem for the conditional expectation

we have
ol ()
XN + e

wiich proves our proposition.
DeFiNiTion 1. Let {X}, n=1, be a sequence of random variables
befonging to LY. We say that X, - X in LG if
X, — X7 -0 ae
as 1-- | <. Also, we say that {X,} is a Cauchy sequence in LY if
[X,— X, 5 -0 ae.

as 1, MM~ + oo -
We are able to prove the completeness of L.

THEOREM 1. The space LY is complete.

Proor. Let {X,} be a Cauchy sequence in 14, n=1. Then, as it can
be seen, we can pick out a subsequence, {Xn}, p=1, from the original
sequence {X,} such that

- F
> 1Xny,,— Xn 2
p=0
converges d.e. where Xp, = 0 a.e. This trivially implies that the series
=2 1 Xn, ;= X,
p=0

converges a.c. From this it will turn out that the random variable

X = lim Xn

P+t
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exists a.e. In fact, hy the Fatou letnma and by Proposition 2 we have a.e.

that
Efof—— ¥ 17\ =
,Zn 1Xn, =X 7 +e

k—

2 1Ky Kol \\
=himinfEf @] - =% . - QT )=
o > ian,,_.,—Xu,,li‘JIJra)
\D=0
h—1 .
| Xn, ., — X'
=liminfE{ &f 7" ~ 7 )=
ot 20 1Xn,. , — Xa & +e
£ _

where &>0 is arbitrary. If follows that | X[ is finite a.c. and
UXIE = 3 [ Xn,. , — X lli +¢ ace,
p=0 ’
Consequently, letiing ¢ -0 we get that

XeLi and (X7 =3 X,
p=0

— X,,Pll‘:f a.c.

We see by similar argument that for arbitrary fixed g=1 the inequality
t—-u =2 —
IX = Xn 5 = > | Xn, ,—Xnll& ac.
p=q
holds, which tends a.e. to 0 as ¢— + e, Thus X,lq—»X in L% as §— + oo.

Further, since

1X = X0T = X = X 17+ 1X, = X I
it follows that
X —XJ%~0 ac.

since by the Cauchy-property
X, — X [T~0 ace.

and by what we have just proved

1X —Xnlld =0 ae.

as §—~ + e and n— + «. This proves the completeness of L.



ON THE L7_SPACES WITH GENERAL YOUNG-FUNCTION 141

Conversely, from the fact that for some X¢ L we have

IX—X &0 ae. as 1 +oo

it follows trivially that {X,} has the Cauchy-property in L3,

3. In some cases we can prove in the L‘;f-spaces some martingale-
theoretic results obtained in the Orlicz-spaces. The following assertion is
artalogous to that of [1], Theorem I1X—-3—4.

THEOREM 2. Let (X, f,), n=]1, be a martingale and suppose that
X, €LE, n=1, with o = sup IX, 7 =b ae., where (Foot is arbitrary, and

b is a positive constant. Hren' (Xpy Fp)y =1, is a regular martingale.

Proor. To prove this assertion it suffices to verify the uniform inte-
grability of the sequence {X,].

Let a=0 be arbitrary. Then for any n=1 with arbitrary =0 we have
the following estimates:

[ | X ]

X

[ X, dP = i—”l(a+s) dP =<a CAIZEE) yp
g+ & [d__a _]

{iXpl=a} J 1 Xni 2 {IX,l=a ote

oFe = ode S

ey ) e |l

bte ) ixza b4e ) ixql=a

- {i_E E{ &l lX | ]|1§E ‘.'.'—'-'—a -}
(p[__E_J HX|M-+E q;[ a ]
b+e b+e

as a—+ + oo, since by Proposition 2 we have

(g 7)o

Here we have used the fact that @{x){x increases together with x and that

(
lim *—(—-) =+ e

Xt

This proves the assertion.
IT we suppose that the martingale is regular and the Young-function @

has finite power p then {X,} converges to its a.e. limit in L.
THEOREM 3. Suppase (X, (#.) is a regular martingale such that X, ¢ LS
Jor all 11,0 = ‘;up X, |]¢. is finite a.e. and @ has the finite power p.

el
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Then X —+X. in LI, where X.. denotes the a.e. limit of {X,}, for all
a-fields (F such that (F CJF,.

Proor. Let "Fof be an arbitrary o-field.
We first prove that X,,eLff. In fact, remark that ¢ is “F-measurable,
Also, by the Fatou lemma and by Proposition 2, we have

E[ [IX l]Jr;ﬂ]{lunlnfﬁ‘[ M]iu?]ﬂ
og+e Ao ot+e

ﬂ]iminfE[di[ X ]|r'?]f:! a.e.

Rt n"‘-’ + &

where >0 i arbitrary. From this it follows that

IlX,,Hff-_:.cr-i-s ie.
and, consequently,
IX.JZ=c ae.
The proof is divided into two parts. Firstly, we suppose that there exists

a constant ¢=0 such that |X.|=a a.e. This implies trivially that |X,|=a
a.e. for all n=1. For arbitrary n=1 consider the random variable

X _Xn”(g' We prove the existence of such a random variable yng.}‘;'f_xn

for which y,—~0 a.e. as n—~ + <. This trivially implies that ||X.. —)(_,!Hf.;‘F -0
a.e. as -+ + oo, Let p, be defined by the formula

vhxh = eP (20 P (| X - X, |P=cP[F),

where p is the power of @, x,=0 is such that ®(x,) = L} and =0 is arbi-

trary. We see that

- &
lim y, = — a..
L Xg

[t is also easily seen that

E [q;. [JE}"_.__;XJ ] |(‘f] =1 ae,

_ Yn
since

Xo—X - ‘ X.—X —
5o [-I.m_nl]w]ﬂﬁ(@(i._u_m )W)+
L1 [Xw_xn[
¥n . i {____..__._-_,_Z -‘fu}
X Xl F el Lp(iXe Xl o
+E(d)( Por I[ﬁf_o.._xn:ctn}))llf‘)_ 5 T 2 E[ ?ﬁxﬁ | j_J

! ¥n
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a.e. and frivially
E(|X..— X, P} Fy=vhxb a.e.
This proves that
Yn€ {.}hj’(’f —Xn

and that
1 F
WX — X e =y, 4.
Since
- £
lim yp, =
v 4 on xu

and =0 is arbitrary we see that

lim |X. - X,,||‘3' =0 a.c.
=+ o=

Secondly, when X.. does not belong to L= then let ¢=0 be an arbitrary
constant and define
Pean X., if | X.|=u,

0, if |X.l=u.
Also, define

X¥* = X, — X%,

Since N

Xp = E(Xu|Fy) = E(XLIF) + EXTF,) = X+ X5
we have _ _ _

1X oo = Xpllar = UXE = X+ IXE* - X¥*la ae,

X% being bounded by a the same is true tor X* = E(X*[F ), n=1,2, ...,
So, by what we proved in the first part of this assertion, we have that

||X1_Xf1!£f—‘0 a.e. A8 oo oo,
Note that, till now all was proved for general i’y c .

But concerning the second term on the right-hand side we have for
JF O, that

I’_ r_—' " \"-“"
NXZF = XA =< UXERE + X5 = 2| X556 ae.

since by fensen’s inequality we have for every v =0 a.e. which is . F-meas-
urable that

£ [(p [JE (X_’-T:}_f_!'_l??q)l_] ] ;,».] -E [q—, [ ?_@f_iﬂfi“_in)_] ;;;] .

1
i

le 1 " = ek
=£ [(D [ el Hi’-'—‘—}--] [GF}-_:E [(D ['i""—l] |GF] a.c.

A

i

and, consequently, we have to show that the right-hand side tends to 0 a.e.
45 &~ + o=, To this end we construct a random variable p(a) in the following
way. Let for arbitrary £>0
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yP(a) =

-E , if E{(D [|;)(iﬂ—| I{|Xw]:_:a}] |(F] =0
[} o+

) !2p(0+£)p5[ [L):_ Tyx 1 a}]l* ], if E[ [i:il Tiix.. 1~a}]|f¥]

It is easily seen that y(a) is positive, “F-measurable and tends to O a.¢. as
a4+ o, With this y we have a.e. that

PR (2 (1 )7
+E (‘D (‘t)i;?‘l !{Jxm_zza, ?’J*?_*-ﬂ_;,}) !'7'){_:%5[@ [%’i'] ll?]Jr

¥

i
+E|® L{ﬂa+€l[ Y [F |=
v-2(c +e) I[}XQ,I:_.-a,-"('?fl:-l}

1 1 2° (o4 &) (X —~ 1 I
=g ._ME[(D [L | ;ﬂxwl_____a}]1l'f]f:_{_+_:
c+e 2

2 7 ?P
- et (F
Fhen ye(Fx % and consequently,

IXx*— X*HT =2y, ae.
where p 18 defined above. This proves the asserfion.

Remark. Note that when supposing X.. to be bounded by a positive
constant « in the first part of the preceding proof we have not used the
assumption that ‘Fc F,.

Consequently, the following assertion is also true.

CororLary L. Let (X, +F,) be a martingale such that | X,| =« where
a is a positive constant. Then with any Young-function ¢ having the finite
power p we have that (X, F,) is regular, X, € L7 where (.4 is an arbi-
trary o-field, and, X, converges also in the LZ-sense to its a.e. limit.
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ON THE OSCILLATION OF MARTINGALES
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1. Let I=p<+ o be a power and let (X, {F,), n=0, X, =0 ae,
be a martingale with integrable p-th power. Consider the Doob decomposi-
tion of the non-negative submartingale (|X,|?, (7,), n=0, i.c. let

(1 X |7 = MP+ AP, =0,

where (M, (F,) is the martingale and (AY?, 1=0) is the natural increasing
process corresponding to the submartingale (]X,|?, (). NeEVEu has shown

that
X. = lim X,

T 4 oa
exists and is finite a.e. on the event {AP < + =}, where
AP = lim AP,

0ot oo
Further, if
(2) E (sup X, ,.I—X,,[P) < e,
n=0
then on the event {AY' = + «} we have
(3) limsup X, = + e and liminfX,, = — o= .
o oo R o

The aim of the present note is to generalize this result by taking instead
of the power functions x?, x=0, p=1, the so called Young-tfunctions.

The definition and the properties of the Young-functions are given e.g.
in NEVEU [1] or in KrasNoseL'sKil and RuTicki [2]. One of the properties
used in this paper is the so called 4,-property of some Young-functions &.
This means that the inequality

(4) O (20)=K D (x)
holds for atl x =0, where K =0 is a constant.

10 ANNALES — Sectio Mathematica — Tomus XXV.
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2, In this note we prove the following

THEOREM. Lot B(x) be ¢ Young-function und let (X, F,), n=0, X, =0,
be a martingale with E(®(|X,|)) <+ e, 1=0. Then the random variable

Xo= lim X,
Howe 5 ome
exists and is a.s. finite on the event A = + o}, where (A", n1=0) denotes

the natural ficreasing process in the Dool decomposition of the submartingale
(@ (X1, Fn)-
Further, If ©(x) salisfivs the -condition and

holds then on the event {A(f') = + e} we fune

(6) limsup X, = + o and HminfX, = — e,

= o H—~ + o
Proor. Since
E((D (1X,,1))~: Loce, nz=0),

the non-negative submartingaie (@ (|X,]), ' F,) can be decomposed accord-
ing te the method of Doob to have

DX, = M+ A, =0,
where the increasing process (Af;”’, n=0) is defined by the fornmla

AR AR = E(@ X, DI F) - (X0, =0, Af =0,
(7)
while (MY", (7,) is the corresponding martingale. Consequently, both terms
of the decomposition are finitely integrable. From the supposition it also
follows that (®(X),#,), n=0, is also a non-negative and integrable sub-
martingale,
Let us denote by (A, =0} the increasing process in the Doob decom-
position of this submartingale. We shall show that
(a7} lim X, exists and is finite a.s. on {AL =+ e},
Rt o
(b") limsup X, = + e as. on {AL = + e }.
A~ + o
This will be sufficient to prove the theorem, because using this result to the
martingale (~ X, (F.), 1=0, we get
(a”) Hm X, exists and is finite a.s. on {A =~ 4 e},
[

Oy liminf X,, = — e as. on {A = + o},

f— — oo
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where (A}, n=0) denotes the increasing process in the Doob decomposition
of the submartingale (@ (X;), <7,), n=0. Collecting the two results (a’),
(b’) and (2”). (b”) gives

(in fact, when the limit lim X, exists on & then limtsup X, and lim inf X,

et o M oo

N o
cannot be infinite} and it also follows that
(8) AV = Ap+ AL, nz0.

Thus we see that AY? is finite a.s. at the same time as AL and AZ. There-
fore, in this way the theorem will be proved.

To prove the validity of (8) we can proceed as follows: write [ X, | in the
form '

IXal = X, I{X,z=0)+(— X, 1 (X,<0)) = X5+ X .

Then we have
| B(|X,) = & (X)) +D(X;),
since
{X,=0N{X,<0} =0
and
P (0)=0.

I't follows from the definition of the increasing process that
AR — A = E(®(1X, 0 DIF,) — (1 X))

Ay — AL = E(@ (X1, ) F)— (X))

Al — AY = E (@ (X)) F) - (X5)
for every n=0. Summing up the last two formulas gives
(9) (A + A — (AL + A) =

= E([® (X0 + @ (X ) Fa) = 12 (XD + 9 (X)) =
= E(@ (1X,0aDIFa) — @ (1X,]) = A2, — ALY

for every n=0, which shows the validity of (8), since AL = A; = A} = 0.
Now let us turn to prove (a”) and (b").

{(a) For every real a=0 let », be the stopping time defined by the for-
mula
b = {min {(n:A ., >a), if AlL>a

+ oo, if A:..Eﬂ'.

Then trivially A; =a, and consequently,

(10) lim E(®P(X.,)) = lim E(A,,,) = E(Al)sa

10%
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since by supposition X, =0 a.e. and it is not difficult to show that A; ,,

is the increasing process which correponds to the submartingale (@ (X anh
{#,) in the decomposition of Doob. The Young-inequality

=9 (u)y+¥ (1,

which holds for every u=0, v=0 and for any pair (@, ¥) of conjugate
Young-functions applied te (10) with v = [ gives

lim E (X, A,,): !1111 E(@(Xﬂm))+‘!’(l){a+‘P(l)-f+oo.

=+ o

This implies that the martingaie (X,,,n, +£,), #1=0, converges a.e. to 1
finite and integrable fimit (see, NEVEU [1}, Theorem 1V—1—2). Thus the
limit lim X, = X. exists and is finite a.s. on the event {p, = + =} =

Mes 4 =
= {AL =a}. Letting a t + - we obtain that X. = lim X, exists a.s. on

H—~ + o=

the event {AL =< 4 <o},
(b’) For arbitrary real number a=0 let r; be the stopping time defined
by the formuta
Imm (n:X,=a), if supX,=a,

n=0

l+ oo, lf Supxri—ﬁ'a'

ne={}
Then the condition
E(® (sup (Xpay = X)) = + o
implies that -
E(AY) = lml E(D (X7, m)

is finite. Indeed, X, ./, =a on the event {v, =} and on the complementary
event {y, =ni} we have

X|’a4m7§ﬂ+(x|# X” —l) .:a+bup (Xn-l X_,!)-;‘é

=2max (g, sup(X, ., —X,)7).
nz=0
Consequently,

DX, m) =max @ (2a), P (2sup(X,.,— X)) =
=)
=K max {® (a), @ (sup(X,., — X, )"}
n=g

since by supposition @ satisfies the /1,-condition. From this we get that

limt £ (@ (X:ﬂ A m)) =E (A""a) =

0= 4 oo

=K{P(@+E(P (SUE (Xpar =X} M= o+ oo
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Thus the positive random variable Af helongs to L' and so is finite a.c.

Consequently, AL =+ = a.s. on the event

bro= + =} ={supX,=a}.

n=0n
If at + o then we have A, < + = on the event

{sup X, =+ e}

nzl
or, equivalently,

sup X, == + o on {A, = 4 «=}.

=0
To compiete the proof it remains to observe that

{sup X,, = + co} = {limsup X, = + oo }.
n=d

Howed o

This follows from the fact that for all n=0 we have X, < + o a.c.

ReEmarx. If we would have contented ourselves with applying the
line of reasoning which gave (a”) and (b’) above to the submartingale

(D (| X1, Fn)» #1=0, and its associated increasing process (A5, n=0), we

would only have obtained

limsup |X,| = +o on {AY = 4 =},

fie 4 s

which is weaker than the result given in the theorem.
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0. Introduction. J. R. IssELL [6] and A. CsAszir [1] have introduced
the concept of various kinds of composition-closed function classes; the
second author examined them thoroughly (cf. also [2]). These classes are
defined as follows.

Let X be a set, @ a function class on X (i.e. a class of real-valued
fuirctions defined on X)), I a set of indices, f,¢® for i€ . Consider the prod-
uct set E=RI = X E,, E; =R for i¢l, and define i: X~ E by g, 0 i ={,

iel
where =;: E— E, is the projection. Let f2(X) denote the closure of A{X) with
respect to the product topology of E arising from the euclidean topology
of E,.

Now @ is said to be strongly composition-closed (sce) if &k o h¢® when-
ever the system {f;:f¢J)c® is arbitrarily chosen and ke C({h (X)) (where
C(T) denotes, for an arbitrary topological space T, the set of all continuous
real-valued functions on T, and f1{X) is equipped with the subspace topology
obtained from the product tepology of E). @ is said to be composition-closed

{cc) if ko flte@ for an arbitrary system {f;} and LEC(h (X)), and weakly
composition-closed (wee) if k o e ® for an arbitrary system {f} and k¢ C(E).

Simitar definitions lead, with the restriction to countable or finite index
sets {, to the countably stmngly compesition-closed (csce), couniably composi-
tion-closed (ccc), countably weakly composifion-closed (cwec), finitely strongly
composition-closed (fsce), finitely composilion-closed (fcc), finitely weakly
composition-closed (fwee) classes. Their interrelations are the following ones
({2], p- 44):

BCC —» CC = WCC

i ¢ ¢
£SCC = CCC <> CWELT
i ¢ i

fsce = fee & fwee
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The purpose of this paper is to investigate function classes defined simi-
larly to the above definitions, first of ali those obtained with the only modifi-
cation that the function & has to be uniformly continuous with respect to the
product uniformity of E arising from the euclidean uniformity of E,, or to

the subspace uniformity induced on 2(X) ar A(X) by this product uniformity.

I. Fundamental definitions. We give a precise formulation to the above
definition. Let us first introduce the following notation. If (X, W) is a uni-
form space, let C(ll) denote the set of all real-valued functions f: X—R
that are uniformly continuous with respect to 1l (and the euclidean uni-
formity of R). Let C*(11) be the set of all bounded elements of C(l1). If
Ac X, let 1|4 denote the subspace uniformity induced hy U on A.

DerixitioN 1.1, Let X, @, I, {f.:iclyc®, E, I, «;, h(X) have the
same meaning as above. The class @20 is said to be uniformly strongly
composition-closed (uscc) if ko he® whenever ke C (U, |(X)), unifermly
composition-closed (ucc) if k o he® whenever ke C(11,|1(X)), and uniformly
weakly composition-closed (uwce) if ko ic® whenever ke C(U;), where 1,
denotes the product uniformity on E arising from the euclidean uniformity
of E,.

As an easy example, we see that C(it) is uscc for every uniform space
(X, 1); indeed, f;€ C(l1) implies that # is (11, U;)-uniformly continuous, hence
ko he C() whenever ke C (11, |A(X)).

DerFiNiTION 1.2, If we restrict ourselves, in Definition 1.1, to countable
or finite index sets [, then we obtain uniformnly countably strongly composition-
closed  (uesce), wniformly countably compesifion-closed (uccc), uniformly
countably weakly composifion-closed (ucwece) and uniformly finitely stronugly
composition-closed (ufsce), uniformly finitely composition-closed (ufcc), uni-
Jormly finitety weakly composition-closed (ufwcec) classes respectively.

The number of the above defined classes can he immediately reduced
to 6:

LEmma 1.3. Any uniformly (countably, finitely) composition-closed
class is uniformly (countably, finitely } strongly composition-closed.

Proor. Every 11,|#(X)-uniformly continuous function & has a W,|a(X)-
uniformly continuous extension ([3], (6.2.7)). }

Thus, in the sequel, we can restrict ourselves fo the examination of ucc,
uwcc, uece, ucwee, ufee, and ufwee ciasses.

LeEmma L4, If @ is (countably, finitely) composition-closed or (count-
ably, finitely) weaklv compesition-closed, then it is uniformly (countably,
finitely) composition-closed or uniformiv (countably, finitely) weakly com-
position-closed respectively.

Proor. If ke C(UA(X)) or keCQL) then keC (A(X)) or keC(E) re-
spectively. |

The number of the distinct uniformly composition-closed classes is
still reduced by the following
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LemmA 1.5, Every uniformly countably weakly composition-tlosed class
is uniformly weakly composition-closed.

Proor. Let ke C(11)). It is well-known (cf. {1], pp. 148— 149) that there
exists a countable subset {' [ such that k{i) = k(v) whenever u, v€E and
() =;(v) for ic P, Hence if we set

@ ={ficll, EE= X E, =aj:E-E,.
el
WiX~E, mok =f (icl)

where =] is the projection onto E,, and if =7: £~ E” is the projection defined
by 7, = 77 o z for i€ 1", finally if 1U is the product uniformity on £, then a
function k€ C(Il;) can be written in the form k =%"o = where e C(t")
(observe that = is a (11;, W)-quotient map by [3], (7.3.26) and (7.3.27), and
apply the uniform analogon of [3], (7.4.3)). Thereforc kofi=K o &’ im-
plies k o he® provided that @ is ucwce. ||

A similar statement holds for ucce and ucc classes but the proof is based
on completely different tools.

Lemma 1.6. Every uniformiy countably composition-closed cluss @ s
uniformly closed (i.c. f,, €D implies f¢@ whenever f, —~f uniformly).

Proor. Suppose f,€®, f.—f uniformly, and set 7 = N. Define & : i({X) -
—~R by

k{h(x)) = f(x) for xeX.
This is possible because (x) = h(y) implies f, (x) = f.(y) for neN, hence
f(x) =f(). For a given £=0, choose n,¢N such that | fp, () —f(x)| -:—;— for

xeX. Then i, vEl(X), |n, (i) —n, (V)] ‘:_:_ implies = hi(x), v = h(y),
&
|f“o (x)""ﬁ!u O’)l = —3'—' and

O —FO = [ () —ke (1) =e -

Thus k¢l |#(X). Now if @ is ucce, then f=4koh by L1 ||

A similar statement can be proved for ufce classes. For this purpose,
let us call, according to [4], a function class @ coherently closed if f,€® im-
plies f¢® whenever [, —f pointwise and there exist functions g, ..., #,€®
and $>0 such that 0-<e=4§, x, ye X and |g,(x}—-g,(¥)|=e fori=1,...,m
imply |f,. ()—f. ()| = for nel.

Now we can prove:

LeEmma 1.7, Every uniformly finitely composition-ciosed class is coherently
closed.
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Proor. Let @ he ufcc, f,,6@® for neN, f,, -f pointwise, and g,, ..., g, €9
be functions with the above properties. Define #% : X ~R™ by

A = (g (V). - g, (0))

and k(X)) -R hv
A (¥ (X)) = fx).

This is possible hecause % (X} = /7% (p) implies g, (X} =g, () for i = L, ...om,
hence f,(x) = f,(v) for neN and f{x) = f()-

Clearly k< C (U, [#* (X)) where 1L, denotes the euclidean uniformity of
R In fact, if o, v 0% (XY and

() m (Ve for o4 0L

then choose x, ve X satisfying i = #¥(x). v = (1) so that (g, () - . (V) =
=r for cach f, whence

S ) fo(0i=e for neN

- K0y = Lf 0y - J vy e

Therefore f = k< ited. |}

According to [3], a function class @ is said to be a suhtractive lattice
it f, ged implies f—gedr, max (f, ;e min (f, gyew. A uiwee class is ohvi-
ausly a subtractive lattice.

For an arbitrary class @ of real-valued functions on X, we denote by
11{e?) the weak uniformity of &, ie. the coarsest uniformity with respect to
which every fed is uniformly continuous.

We shall need the following

LEmma L8 (4], Satz 3). If @ is « coierently closcd subtractive laftice

that contains all constants, then every \()-uniformiv continnous function is
wirifornn Linut of @ sequence taken ﬁom i |

and

Now we can prove:

Lemma [.9. A class & is uniformiv coniposition-clused iff it is 4 uniformiy
closed und coherently closed subtractive laffice thal confains ol constants.

Proor. Let @ be uce. Then it is obvicusly ufwee, hence a subtractive
lattice fhat contains all constants hecause 2 constant function & :R-R
belongs to C(U,). & is clearly ucce, hence unifermly closed by 1.6, and ufec,
hence coherently closed hy 1.7,

Now suppose that b satisfies the conditions in the statement. By 1.8,
C(WPY =, and obviowsly @<= C (L) so that & = C(U(P)) and &
is uce. §

Now we can fermulate the following analogoen of 1.3:

CoroLrary 110, Every aniformiy countably compositivn-closed cluss is
unfformiy composition-closed.
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ProoF. A uccc class is ufcc and ufwcee, hence a uniformly closed and
coherently closed subtractive lattice containing all constants. |

CoroLLaRrY L1, A class is unifermly compesition-closed iff it is ani-
Jormly closed and unifolunly finitely eomposition-ctosed. ||

CoroLLARY L.12. A cluss P is nniformly composition-closed iff there exists
a wnifermity W such that @ = CQAL).

Proor. We know that the condition is sufficient. It is necessary because
the proof of 1.9 shows that a ucc class coincides with C (0{&)). |}

THEokEM 1.13. We have the follmwing implications:

LUSCC <> UCC = UWCC
i i i
LUCSCC > UCCE => UCWCT
L y i
ufsce = ufee = ufwee

Proor. The arrows from the left to the right and those from above to
below arc abvious. 1.3 yields uce=usce, ucce=ucsce, and ufcc=ufsce. 1.5
furnishes uewee==uwcc, and uccc->uce is obtained from 1.10. ]

As a consequence of 1.13 we can restrict ourselves to the simpler dia-
gram

1UEC -.» UWCE

ufce - ufwec
These implications cannot be reversed. In fact, we shall see in 2.6 that
ufcc—+uwce, hence ufec--uce and ufwee+uwee. In order to prove wwee—-
-+ ufec, let us first infroduce the following notation: if @ is a function class
on Y and Xc 'V, let @] X denote the set of all restrictions f| X for fed.
Now it is easy to prove:

LEmma 114 If (Y, W)Y is a uniform spuce and X<V, then CUNX is
unifoermly weakly composition-closed.

Proor. For f,: X--R, [ = g X, geC(l), define i: X ~-E =R as
always, and similarly #': Y-R? by =, c " = g,. If k€ C(l;), then ko i<
€ C(), consequently £ o i = (ko )| XeCAY|X. ||

Now consider @ = C(11,|)N. By 1.14, & is uwcce, but it fails to be ufcc:
indeed, f(x) = x defines, for x¢N, a function belonging to @ and, for the
family {f}, we have & = f, i{N) = N, and &{x) = x* (x¢N) furnishes a func-
tion k¢ 11, |N because 11, |N is the discrete uniformity on N. However, ko h =%
does not belong to @. This exampie shows that uwece--ufce, hence uwec -
-+uce and ufwee-~ufce.

Concerning the relation between uniform and ordinary composition-
closed classes, it is enough to consider @ = C(Il,); it is ucc by 1.12, but it
is not fwee since fed for f(x) = x (x¢R), while k o fad if k(x) = x® (x¢R),
ke C(R).
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2. Classes of the form C(Il), C(11)| X, C* (1), C* ()| X. We hegin with
a slightly more precise formulation of i.12. For this purpose, let us recall that
a uniformity 11 is said to be a c-uniformify if it is of the form (@), i.c. if
there exists a function class ©® such that 11 is the weak uniformity of &,
Now we can prove:

Tueorem 2.1 Far g function class @ on X, the following statements are
equivatent:

(a) @ is uniformly composition-closed,

(1) there exists a c-uniformity 1\ on X such that @ = C(1),

(¢) there exists a uniformity W o X sueh thal o = C(1).

() there exist ¢ set Y2 X and a c-uniformify Won ¥ sack that X is dense

in Y and & = CADH X,

(¢) there exist a set Yo X and a uniformity 1 on Y such that X is deuse
in ¥V and & = C(IN)| X.

Proor. (a)=(h) is contained in the preof of 1.12.

1) !D(C) ;D} (¢) is obvious.
= (d) =
{ey>(a): If X is dense in (V, 1), then the extension theorem for uni-
formly continuous maps implics CADIN — C(X). |
2.1 corresponds to [2], Theorem 2 and Theorem 4. Fhe following theo-
rem is the uniform analogon of [2], Theorem 3:
Tueowem 2.2, For a function cluss & on X, the following stalements are
equivalent:
(a) & is unifornly weakly composition-closed,
(by there exist « sel Yo X and ¢ c-untiformity W on Y such that @ =
s C{IY X.
(¢) there exist a set Yo X and « uniformity Won Y such that ¢ = C(11)| X.
Proor. (a)=(b): Choose an index set [ such that @ = {f;:i€ [}, con-
struct £, 7t as usnally, and define ¥ X such that there exist a bijection
Y —-X—-E—n(X) and a map g: VY -~ E such that

o) = {h (x) if xeX.
vy if xcvV-X.

Let 11 be the initial uniformity ot X corresponding to g and the uniformity
1, on E.

W is a c-uaiformity because it is the weak uniformity of {x, 0 gricl).

The equality f, = (7; = ©)| X yields @c C(IX. Conversely if fe C(LL)
then it can be factorized in the form f = & < g where £eC(11,). Since ¢ is
uwee, f|X =k ¢ fte®, consequently C(1L)| X cd.

(b) »(c) is obvious, and (c)=>(a) is obtained from 1.14. ||
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Let us now consider classes of the form C*(11) and C*(W)|X. For this
purpose, we shall say that a class @ of real-valued functions on X is boutnded
if every fe is bounded. Classes of the form C*(11) or C*(M)| X are clearty
bounded.

We also need the following analogon of the Tietze — Urysohn extension
theorem {cf. [3], 4.2.£.9):

Lemma 2.3. Lef (V, W) be a unifornt space, XV, and f¢ C*11]X).
Then there exists a g€ C*W) such ihat g/ X =f. §

Now we can formulate the following characterization theorem:

THEOREM 2.4. Lol @ be u bounded function class on X. The following
statements are equivalent:

{a) @ is uniformly composition-closed,

(b) there is a c-uniformity 1 on X stich that & = C*(1),

(¢} there is a uniformity W1 on X such that @ = C*(11),

(d) there exist a sel YO X and o c-unifornity 1 on 'Y such that @ =
= C*(U)| X,

(e) there exisl a set YO X and a uniformity 11 on YV such thet @ =
= CH1Y| X.

Proor. (a) =(b)—=(c) tollows from 2.1, (b)=(d)=(e) and {c) »(e) arc
obvious.

{e)=(a): By 2.3 CHIXHc C*(l)| X, and the opposite inclusion is
obvious. Hence @ == C*(Q|X). Assume f,€® for icf, and define E, I as
usually. The set =, (H(X)) fi{X) is bounded for each i, hence thele are
eompact intervals [ﬂ,., b, ] R such that

MX)C X fa, b;].
!

Thus A(X) is compact. If now k¢ C(W,JA(X)) then & is bounded and & o he
cC*(U|X)y=a@. By 1.3 & is ucc. |

CoroLLary 2.5. A bounded and nniformiy weakly composition-closed
class s uniformly composition-closed.

Proor. If @ is bounded and uwce, then @ = C(I1)| X by 2.2 for a suitahle
uniform space (Y, 11} such that ¥ X, Hence obviously @ = C¥*U)| X and
t is uec by 2.4. §

Now we are able to produce a class that is ufec without being uwec:

ExamprLE 2.6. Let X <R? be the union of all straight lines L, = {(x, n):
x¢R} for neN, equipped with the uniformity U,|X. Let & be the class of
all those fe C*(1) for which there is an 1, such that f(x, =0 if n=un,.
By 2.4 & is ufec. If © were uwce, then it had to be ucc by 2.5, hence uni-
formly closed by 1.11. However, this fails to he true: the function

. I .
Jlx, Yy = -~ sinnx
It
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is the uniform limit of a sequence taken from 6 but does not helong to &
(cf. [6]), p. 103 and [1], pp. 149 150).

In the following theorems we assunie that o uniformity is given on X.
They comrespond to [2], Theorems 5—7, and the role of compietely regular
topologies is played in them by c-uniformities.

Treorem 2.7. Let 1 be a c-uniformity on X and & be a function class on
X. The cquatity @ = CQU) holds iff W is uniformiy compasition-closed and
1T = 1(P).

Proor. If @ = C(I1) then 15 ucc. Let @7 be a function class such that
W= W). Then &' C(1l) = &, hence 11 = (@) 1(P), and obviously
WP 1l, consequently 11 = 11((1))

Conversely if 1 is ucc and U = W(®), then & = C(I1) by the proof of

1.12.

THeEoreN 2.8, Let (X, W) be a wniiform spuce und @ be a funciion cluss
on X, There exist u set Yo X and a c-uniformify W on Y such that 1 = WX
und @ = CQUNX iff @ is uniformly weakly compasition-closed and 11 = (D).

Proar. If & is uwce, then by 2.2 ¢» = C(A1")| X for a suitable set Yo X
and a c-uniformity 117 on Y. For @ = C(II") we have 0" = (@) by 2.7.
By [3], (4.2.10), we obtain WX = W(®), hence W|X = Wit 1 = (D).

Conversely assume 1l = 11 ]X and @ — C(IU")| X for a c-uniformity 1",
Then & is uwee by 2.2, and the above argument yields WX — (@), heuce
u=u@). |

THEOREM 2.9. Lel W be w precompact c-uniformity on X, and & be o

bounded function cluss ont X. We have o = C¥W) iff @ is uniformly composi-
tion-closed and 11 = 1U(@h).

Proor. If ¢ = C*(11) then < is uce by 2.4, Since 11 is precompact, we
have C*(11) = C(W) and 1 = (D) by 2.7.

Conversely let @ be uce and I = W), Then ¢ = C(U) by 2.7, hence
@ = C*(1) by the precompactness of 11 ||

3. Classes of the form C*(X)and C*(Y)|X. We denote, of course, by
C*(X) the class of all bounded, continuous real-valued tunctions on a topo-
logical space X, Similacly, if T is the topology of X, we write C(3) and C*(3)
for C(X) and C*(X) respectively.

Lemma 3.1, Every class CH*Y)Y)X is weukly composition-closed; if is
composition-closed if X is dense in'V, jn particutar if X = Y.

Proor. Let f; = f7| X, fi € C¥(Y). Define E, it as usually, and " : ¥V - E
by z; 0 it = . Then fi(Y)C[a,, b,J<R for each i, hence #'(Y) is contained
in the compact set

K= X {a, b]cE.
ict

Thus if k<C(E), then Li’'(Y) is bounded, and koW ¢CHY), ko h =
(ke NIXeCHY) X
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If X is dense in ¥, then #'(Y)ch(X)c K, hence keC(h(X)) implies
that & is bounded, and ko i = (ko /') | X CHY) X. ||
Observe that C¥(X) need not be fsce; indeed, consider X = (0, 1),

f(x) =x for xe X, and &(x) _—E— for #{X) = [(X) =0, ).

CororLLARY 3.2. Everv m‘ass CYWVY X is uniformly composition-closed.

Proor. A wec class is cee, hence ucee by 1.4 and uce by 1.13. ]
3.1 admits the following converses:

THEOREM 3.8. Lef @ be g bounded function class on X. & is weakly com-
position-closed iff there exist a set Y o X and a topology on Y such that & =
C¥(Y)| X.

Proor. The sufficiency is contained in 3.1. Now if @ is wee, then, by

2], Theorem 3, @ = C(V¥)|X for a snitable topological space Y. Then
¢ = C*( V)| X because every f has a bounded extension in C(Y). |

A similar argument furnishes by [2], Theorem 4:

TrHEOREM 3.4 Leéf ¢ be u bounded function cluss on X, W is composition-
elosed iff there exist a set Y 2 X and o topology an Y such that X is dense in
Yoand & = CHY)|X. |

In order to characterize the classes C*(X), we need a concept intro-
duced in [5]: a function class & will be said to be cnvelope-closed it fed
whenever there are <, c® and 0 ~¢,c® such that f = sup @, = infd,.
This concept oceurs in the following

Lemma 3.5 (I3]. Theoremm 8). Let & be u bounded ,r'mu.firm class o X.
There exists a tapology X on X such that & = C¥I) {ff & is an envelope-
closed sublractive laftice containing all constants. |

Now we can prove:

THEOREM 3.6. Lot b be a bounded function cluss on X. There exists u
topalogy o1 X such that & = C¥X) iff @ is finitely composition-closed and
ernvelepe-closed.

Proor. The necessity results from 3.1 and 3.5. Conversely, if & is fce,
then it is a subtractive lattice and contains all constants so that, by 3.5
again, @ = C*(X) for a suitable topology on X. |

Tueorem 3.7, Let X be a completely regular space and & be a bounded
Junction class on X. Then @ = CHX) iff @ is finitely composition-closed,
envelope-closed, and the cozere-sels of the elements of @ constituie a buse for X,

Proor. If @ = C¥(X) then @ is fce and envelope-closed by 3.6 and the
last condition is obvious. Conversely if all conditions are fulfilled then 3.6
fnplies that there is a topology I 37 on X such that & = C*(T'); it is well-
kuown that C¥(37) = C*(3) if T is the topolnﬂy whose base is composed of
the cozero-sets of the clements of C%37), ie. & = C¥3) = C*Q) =
= C¥X). |
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THeEOREM 3.8. Lef (X, W) be a uniform space. We have CH(U) = C*(3)
where 3 s the topolegy induced by W iff C*(11) = & is envelope-closed.

Proor. The necessity follows from 3.6. Conversely if & = C*(l) is
envetope-closed, then @ is a bounded subtractive lattice containing all con-
stants, hence, by 3.5, it is of the form @ == C*(I’) where I’ is a suitable
topology on X. By 3.6 @ is fee so that 3.7 can be applied because the cozero-
sets of C¥(U1) constitute a base for € by [3],4.2.£.2.

4, Boundedly composition-closed classes. Another characterization of
the classes C*(X) can be given with the help of the following
DeFixiTION 4.1, A function class @ on X is said to be boundedly strongly
campasition-closed (sc*c), boundedly composilion-closed (c*c), or boundedly
weukly composition-closed (we*c) if fe® (1€ 1) implies, with the usual mean-
ing of E, 1, that we have k o he® whenever k¢ C¥{fi(X)), or ke C¥({(X)),
or ke C*(E), respectively.
Lrmma 4.2, If & is boundedly strongly composition-closed amd bounded,
then it is emvelope-closed.
Proor. Suppose f = sup @, = inf®, where
Dy = {f, i€ d), B=, = {f;1ich},
and fl.(_fb forief — flu "z- For these j" and {, define £ and 1 in the usual
way.
We shali define £ :(X)—-R by
k() = f() (eX).
This is possible since x, ve X, i(x) = Hy) implies f,(x) =f,(v) for every
i€{, hence f(x) = f(v). The inequality
Ja)zkh () =fi,(x) (€], bels)

shows that k is bounded. We show that k¢ C*{((X)).
In fact, for z = fi(x}eh(X), x¢X, and £=0, choose i,¢f, and i,¢l,
such that

K@= =) k@)
If now u == i{y)e M X) satistics

l.?Eh (u)_-"'lfl (Z)l {% ! |3ng (u) R (Z)l {t}

then

k@)—e=fi, W21} = K@) =fi, =k @)+,

according to the statement.
By hypothesis k o fic, i.e. fed. ||
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THEOREM 4.3. A bounded function class @ on X is boundedly strongly
composition-closed iff if is of the form & = C¥{(X) for a suitable fopology on X.

Proor. If @ is bounded and sc*c then by 4.2 it is envelope-closed and
a subtractive lattice containing all constants (because &, {(u,v)=u—v,
ky (1, v) = max (u, v), k;(u, v)=min(g,v) are bounded on bounded sub-
sets of R?}, hence & = C*(X) by 3.5. The converse is obvious. ||
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§ 1. Introduction. 1t is well-known that a divisor d=0 of a positive integer
1 is called unitary if dé = n and (d, ) = 1. We write d|in to say that d is a
unitary divisor of 1. Analogous to this the second named author (¢f. [3]) in-
troduced the notion of a bi-unitary divisor. A divisor d=0 of the positive
integer # is called bi-unitary if ¢ 6 = n and (¢, 8)** = 1, where (d, 8)** is
the greatest common unitary divisor of both d and . Recently the second
named author and M. V. Sues a Rao (cf. [6]) generalized the concept of bi-
unitary convolution and obtained several interesting asymptotic formulae.
They considered the bi-unitary k-ary product F** () of arithmetical func-
tions f(m} and g(n) defined by

EMm = 2 fdg(d),

do=—n
(d, 8 %= 1

where & is a fixed positive integer and {a, b)}* the greatest among the com-
mon k-th power unitary divisors of a4 and b. In case k¥ = 1, this reduces to
the bi-unitary convolution.

As usual, by a k-free integer, we mean a positive integer which is not
divisible by the k-th power of any prime. Recently, an estimate for the sum-
matory function ¥, (#1; 1) has been established by the authors (cf. [7])
where y, (m; n) denotes the inaximal k-free divisor of m which is prime to a.
In particular, when &k =2, y,(m; n) = y(m; n); the maximal square-free
divisor of mr which is prime to 1. Let y(m) and (i) respectively denote the
maximai square-free divisor of /m and the maximal square-free odd divisor
of m. It is clear that y{m: 1) =y (m) and y(m; 2) = 6(m). Let y**(m; n)
denote the maximal square-free bi-unitary divisor of m which is prime to «
and let ¥y**(m) and d**(m) respectively denote the maximal square-free, bi-
unitary divisor of m and the maximal square-free, bi-unitary odd divisor
of m.

1t*
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In this paper we establish asymptotic formulae for

>, ylmn) and > v n)
m=x m=Xx
(m, =1 {m, m=1

with uniform O-estimates for the error terms (sce § 3) and deduce several
corollaries. Further on the assumption of the Riemann hypothesis, we im-
prove the order estimates of the error terms in the asymptotic formulae.
In § 2 we prepare the necessary background that is needed in establishing
the asymptotic formula of § 3.

§ 2. Preliminaries. Let p(n) denote the Mobius function and let ¢(n)
denote the Euler totient function, ¢*(n) denote the unitary analogue of
w(n) (cf. [1]. § 1), w(s7) denote Dedekind’s y-function (cf. [3] p. 123) and j(n)
denote the Jordan totient function of second order (cf. [3], p. 147). These
functions have the following arithmetical forms.

1) pM= > wld)é=n[f I—._]_]
di=n pln P

(2.2) e*{n) = Z w*(d) 6 = n Jii [1_!“_1‘]
de=n p'-‘”.n pu
(d, #)=1

i

23 g = 3 u¥{d)é = 14—

(2.3) p (1) d%n#() n}{]{[ p]

(2.4) J @ = M@F;ﬂgp—ﬂ]
do=n plr "

where u*(1) is the unitary analogue of the Mobius p-function defined by
¥ () = (—1)*", w(n) being the number of distinct prime factors of 7= 1
and w (1) =0. We note that

(2.5) ¢* (M) = o (m), if nis square-free.
it is clear from (2.1), (2.3) and (2.4) that

(2.6) wn) = 200
v (17)
Let H(n) be the function defined by H (1) =1 and
I
(2.7) H () = 12 [l—_——————] for n>1.
5% plp+1)

ReEMARK 2.1. Tt is clear that ¢ (n)=<n, p(n)=n,

: =0 [LJ, gince
J{m i
(cf. [4]. Theorem 280), where

4

12

:
$(2)

ol

pln
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£(s) is Riemann zeta function defined by {(s) = > 1 for s=1. Further,
=1 m*

—--l - = O[L], since
H(m "t
1 | n®
H{()y=n? 1— — |=n® l——] = .
= [,?[ P(P+1)] ! ]g[ pz] .

Let @(17) denote the number of square-free divisors of n. Let o and § be the
constants given hy

1
2.8 =
(28) : g{ p(p+1)]
F-Ni{p-1)
2.9 = [P LPA iy N
9 7 g[ p*(p2+p—1)]

et (F(11) be the function defined by

(pP*—N(p-1)
G = WD RET f = | d G(h)=1.
() .pr[ljn p*(p2+p—l)] or n an (H
(2.10)

Let /{m) =1 or O according as n =1 or n>1 and note that {(rn) is multi-
plicative.

Throughout the discussion x denoies a real variable =3, ¢ denotes
a preassigned positive real number, « and 1 are fixed positive integers. Al
the O-estimates that appear in this paper are independent of x, « and n but
may depend on . We describe this situation by mentioning the word ““uni-
formly’” at the end of each formula.

We need the following Lenunas to prove our main theorems.
LEmMma 2.1, {cf. [2] Lemma 3.1, s = 2)

(2.11) ¥ L. .“:(2){(?)_.+0[L]_
m=x M- 1= x
{n, =1

uniformiy.

LEmma 2.2 (cf. [4], Theorem 63)
(2.12) %‘(p((i) =1,

d|n
LEmma 2.3.

(2.13) y(m; n) = &%;ﬂz (@ (d){(d, m)-
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Proor. By Lemma 2.2, we have

ymn = S g@= 3 p@)= 3 2@¢@!((d ).

i) d sz!:',; frec aim
S(cclt, n).—:l ¢
Lemma 2.4, (cf. [6], Lemma 2.1, k= 1)
1 if (mon)y** =1.
2.14 *(dy =
(14) 2w {0 otherwise .

i

Lemma 2.5, (cf. [1], Corollary 2.1.1)

(2.15) E%;(P*(d) =1.
LEmma 2.6,
(2.16) Yy )= Y pldye @@ n)y(e;n).
d2o=m
(d, 8)=1

Proor. We have d|jy** (m, n) if and only if d is a square-free, bi-unitary
divisor of m and (d, n} = 1. Hence by Lemma 2.5 and (2.3),
yRmmy = > el = 3 ¢f )=
¥ (m; 1) @

(d,n)=1
dsquare-irec

= 2 #@e@i((d )= Z w@edi{d m)i{d s)**).

de=m do=in
(d, sy¥*=1

Now, by Lemma 2.4, if follows that
yH(mn) = O @ {dyedI{(d, n) 3 et ) =
d

da=m I
]|

= 3 @e@I(@ ) S )=
da=m th=d
Ha=0
()=t ta)=]

= > i) e(th)i{(th, m)u* () =

12hitp=m
(Edyfa)=1

= > ety Oe ) L, ) LG ) p* () =

= fLia=m
(1 ta)=1

= 2 ae®Itm) 3 wt)et) (. m) =

12 u=rn tita=n

=1
= 3 a@e®I((t M)y a).

{2u==pm
¢, m=1

by Lemma 2.3. Hence Lemma 2.6 follows.
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LEmma 2.7. (cf. [7], Corollary 4.1.3). For x=3 and n=1

3
7 2 3“2:__
(2.17) ng‘x w{mye(m) = p O H (D +O[0(n)r a(x)]

(m,n)y=1

uniformiy, where &(x} is given by

1k

H)

l
|
(2.18) Ax) = iexp 1—A Iog x(loglog 1) °|
1, for Q=x<=3,
A Dbeing a positive absolute constant.

Lemma 2.8. (cf. [7). Corollary 4.2.3). If the Riemann hypothesis is
true, then for x=3 and n=1

@19 3 @mgm= T +o[6(n)x_ w);
mZx 22 p () H (1
{m, A)=1
uniformly, where o(x) is defined by
. —1 —
(2.20) o () = exp {A log x (log log x)~%}, for x=3,
I, for QO=x-=3,

A being a positive absofute constant.
LLEMMA 2.9. For u=1

221 < almet(m)  Bu
(=2l ,,z. m® H (i) G () '

: - tm =1
where 3 and G(u) are defined by (2.9) and (2.10) respectively.
Proo¥r. The series is abselutely convergcnt, since
() gt (m) O[ j ]

L M H () s

by Remark 2.1, and the general term of the series is a multiplicative function
of m, so that the Lemma follows, expanding the series on the left into an
infinite product of Euler type (cf. [4], theorem 286).

LEmmaA 2.10. For u=1

. pime*Gn)  pu
(2-22) ngx m® H (m) G(u) G Y [ xz]
i, u)=1

Proor. We have by Remark 2.1,

Cemetm) Ay L [L]
,,,Zx nr® H (i) O( mZx m“) O[,,Z,, n 0 xz}

{m, =1 (m, =1
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Since
wmerlm) S plmeilm) w#lme*(m)
mEx ms }1 (m) =1 fﬂ3 I’I(HI) mM=x HJH(m)
(m, u}=1 t, u)=1 (m,uy=

Now, Lemma 2.10 follows by Lemma 2.9.
§ 3. Main Results. First we prove the following.
Theorem 3.1. For x=3 and for fixed positive integers 1t and u

3 2 3
G S =20 oo T ).

e 2y (um) H (un)
(m, w)=1
uniformly where 8(x) is given by (2.18).

Proor. By Lemimas 2.3 and 2.7, we have

3.2) > ovmn= 33 e @e@(d )=
(m,:)il (mr?l:‘)il do=n
= 2 #@deld= ZF 2 wd)eld)=
(fgif)gl e (e
B 3o (uny® x2 _3"" M
- “a-g-);x_l["r S (un) Hiun) 8° [0( ) [6 ]]} B
B 3o (un)* x* - | X 3/ X
 azy(un) H (un) mzé‘x | m* 0 (8 () ,Ex [m] ’ [m ]) )
{m, )= (e, a}=1

By (2.18) it is clear that x4 (x) is monotonic increasing for every r =10, so0
that we have

2 [ 2 GG )

(i, u}=1 m,u)=1
0 x By . - ]
= ( ng‘x [;] h b(x)) = (x, 8 (x) mzx Tn73f2}—') =
(m, r?): 1 (m,!lt_)=l
=0(x*8(x)).

Hence by Lemima 2.1, Remark 2.1, and the above disuccien, (3.2) becomes

3u (un) x2 { 12 W) +0 [ O (u) ]}_r

fre X

2 T = )

(m,u)=1
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aun® Ju)x®
2y (un) H (un)
. aun® f{u)x*
B 21p(un) H(un)
Hence Theorem 3.1 follows.
CoroLrLary 3.1.1. (# = 1). For x=3 and for any fixed positive integer 7,

+0(O(un)yx*? 8(x)) = + 0 (X)+ 0 (O {un) x¥2 § (x)) =

+0 (O (un)x** 8(x)).

x 1% x*
3.3 y(; 0y = —————— + 0 (O () x32 8 ()Y ;
(3.3) mZ:jx/( ) 2w (1) H (D) (@(m) ()}
uniformly.
CorOLLARY 3.1.2. (n == ]). For x=3 and for any fixed positive integer u,
3_4 w{i) = _a_-tl_q)_(ﬂ.)ig__l-o 9 i x3;r9.a X)),
(3.4) 3 vim = S0 (0w s (1)
(m,u)=1
uniformly.
CoroLLary 3.1.3. (n = 2). For x=3 and for any fixed positive integer «,
. 2e 1t p (1) X 3
3.5 d{my=—""" 40O x*5(x)):
(3.5) m%,x () SH (@) (©(u) )
(m,u=1
unifermly.

Remark 3.1. Corollary 3.1.1 has already been established by the
authors (cf. [7], Corollary 4.3.4). Formulas (3.3) and (3.4) in the case u = 1
reduce to those results already established by the authors (cf. [7], Corol-
lary 4.3.5 and 4.3.6)

THEOREM 3.2. I the Riemann hypothesis is frue then for x=23 and for
Jixed positive integers u and n

NP un® J{u)x* 715 4 _
3.6) mZ-E:x v {nt; ) = ——zﬁ’ (@ H () + 0(0 (un} x"® w(x)};
{m, uy=1

uniformly, where w(x) is given by (2.20).

Proor. Following the same procedure adopted in the proof of Theorem
3.1 and making use of Lemma 2.8 instead of Lemma 2.7, we get the fol-
lowing instead of (3.2).

3a (un)® x* 1
(3.7) Z y (m; ny = — .GE(____) . —+
max 7 L2 (Hﬂ) H(Hﬂ) m=x M-
{m,)=1 (m,u)=1

+0 Bfun)x” 3 w[_}”;]_

m=X m”5
(m, &) =1
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Since w(x} is increasing, we have

mMEX mzsx n?'
(m,u)=1 imi,uy—1

6 g s
2 mi 0 (o)(.\‘) 2 ; —) = 0(m(x)).

Hence (3.7) reduces tn

} 3z (un)* x+ i .
Y w(mi) = - = , OO (U X7 o (X)) .
né‘x ( a0y (ury H(um) néx me ( )
(LT tn, =1

Now, Theorem 3.2 follows by Lemma 2.1 and Remark 2.1.

Coronrary 3.2.1. (= !). If the Riemann hypothesis is truc then for
x=3 and for any fixed positive integer 1,
z 1* x*
(3.8 y(mn) = - — - (G (1) X7 (X))
mzé.\‘ 21{’(“) H(”}
uniformly.

CoroLLary 3.2.2. (n = ). If the Riemann hypothesis is true then for
x=J and for any fixed positive integer i,

. zl@(uyx* . . )
3.9 my=—>1—"— + (O (u) x> w{x)):
(3.9) m%x 3 2H (1) (O (u) X7 w(x))
(m,uy=1
untiformly.

CoroLLary 3.2.3. (1 = 2). If the Riemann hypothesis is irue then for
x=73 and for any fixed positive integer 1,

2ot s (12) X*

3.1 > a(m) = -+ 0 (O () X7 (X)) :

LIESS S5H (H)

m,uy—1
uniformly.

Remark 3.2, Corollary 3.2.1 has alrcady been established by the authors
(cf. [7], corollary 4.4.4). Formulas (3.9) and (3.10) in the case ¢ = | reduce
to those results alrcady established by the authors (cf. [7]. corollaries
4.4.5 and 4.4.6)

THEOREM 3.3. For x=3 and fixed posilive infegers n and u,
. 4 2
D G R rpuwnt Jix® + 00 (ury x¥2 5 (x)) :
mEx 2y (un) H (an) G{un)
(rr, 1) =1

G110
uniformiv where 8, G(n) are respectively given by (2.9) and (2.10).
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Proo¥. By Lemima 2.6 and theorem 3.1, we have

@12y > = Y > w@e@{d )y, n) =

m=x m=x dia=m
=1 (m,u)=14{d,s)=1

= > pdedy@:n= 3 uwded > y@n=

dis=x d=yx LTS
{do, u)=(d, 8y=(d, m)—1 (, u_n)zl {a, nd)=1

— u zudn? [(ud) x* Lole [i]” [}_]]} _
2 1o ){ 2p (und) H (und) d* [ | 2\
(d, ame_ |

= LR J wi’ -I (E Z :%ﬂ?j_({n) +
2y (un) H(un) nes H(m)

o)

Since x4(x) is monotouic mereasing for every =0, and O (m) = O (),
since G(m)=z(n) where =(m) is the number of all divisors of m and +(m) =
= O(nr) (cf. [4], Theorem 315), the sum in the O-term of (3.12} becomes

s i) 3 o]

mz=¥x
(m, )=

J—O(G(un) > O(m)[

m=x
(o, )=

m_-l/x mi=fx
(i, ) =1 (mr, um)=1
32—, ) .
—0 ( Y a(m) [i] o)\ =0f 28 > O;(fil -
m=¥x m= m=yz T
\im, um=1 ()= |
— 0 (¥ 58(x)).

Now, (3.12) reduces to

o (e 1) e ruw jlu)x um) @ (m)
méx P ) 2 (un) H (un) m§}’x_ m® H (n1)

(o, mry=1 (e, )= 1
+0 (O (un) x¥* §(x)).
By Lemima 2.10 and Remark 2.1, it follows that

S () = aun® Ju)x® { Bun +O[—]— ]}+

mzx. D (un) Hun) t G (un) b
o « B u? i But it J(u) X
o(e X g = . +0(O 32 §
0 (6 un) () = ":,u (un) H (un)G(uu) (O(un) x4 () -

Hence Theorem 3.3 follows.
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CoroLrary 3.3.1. (1 = 1). For x=3 and for any fixed positive integer n.
- 4 42
(3.13) AR ) = ——————— — 4+ O (M X2 (X)
lé\' 2p(my H{ G(n) ( ()
uniformly.
CoroLLary 3.3.2. (n = 1). For x=3 and for any fixed positive integer u,

x g utg () &*

3.14) DFEOmy = TE P2 T 0@ 3 6 (X))
( ngx () 2H iy G (1) +0(Ow) )
im,uy— 1
uniformiy.
CoroLLary 3.3.3. (u=1. n1=1). For x=3
(3.19) mzx y¥E(m) = % 2 H0(XP2 (X))
uniformly.
CoroLLary 3.34. (t=1, n=2). For x=3
2
(3.16) >, FF () = 2':—9;6,\'2 +0(x*28(x)).
mox {D
uniformiy.

THreoreEm 3.4, If the Riemann fivpethesis is true then for x=3 and fixed
positive integers n and u

~FF (g1 11) - A ORS O XT3 m(x) ;
mZ:x 7 ) 2 {unty H (un) G (un) ( () o ))
(=1
(3.17)

uniformiy where oxx) is given by (2.20).

Proor. Following the same procedure adopted in the proof of Theorem
3.3 and making use of Theorem 3.2 instead of Theorem 3.1 and by observing
that ¢i(x) is moenotonic increasing, we get Theorem 3.9.

CoroLLAry 3.4.1. (u = [). If the Riemarnn hypoethesis is true then for
x =3 and for any fixed positive integer 11

3 z 8t x* _ .
3.18 )= —————— G XY (X)):
o "'%") ) 2y () H(m) G () A CAORRICY)

uniformly.

CoRrOLLARY 3.4.2. (1t = 1}. If the Riemann hypothesis is true then for
x =3 and for any fixed positive integer «,

- xfutqu)x* 25 fay
3.19 ok + 0 (0 () X w(x)):
(3.19) {mm%_i], m) = = @@ oW ew)

uniformty.
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CoroLLARY 3.4.3. (=1, n=1). If the Riemann hypothesis is true
then for x=3

(3.20) > p*E(m) = ~])— o B x4+ 0 (x5 w(x));
m=x bl
uniformly.

CorROLLARY 3.4.4d. (1= 1, nu=2). If the Riemann hypothesis is true
then for x=3,

3.21) > o (m) = —;—? x B x*+ 0 (X" w(x)};
msx J
uniformly.
THeCREM 3.5, For x=3 und fixed positive integers 1t amd u,
~ . 3 -
{3.22) Z _”_(in”'f) = u__n___]_(u)_1+ O((_) (um) X2 6(.\’)) :
-ax 1 y(un) H (un)
wniformiy.

Proof. The proof follows by Theoremi 3.1 and by partial summation
(cf. [4), Theorem 421).

THEOREM 3.6. If the Riemann hypothesis is true then for x=3 and fixed
positive integers it and i

B r - 3 -
(3.23) S ) 2t JEX 60 () x5 o(x) ;
mEx mt w{un) H (un)
(m, =1
aiifermly.

Proor. The proof follows by Theorem 3.2 and by partial summation
(cf. [4], Theorem 421).

THeorEM 3.7. For x=3 and fixed positive integers n and u,

o ymn) | «putal Ju)x 2 5 ()
m%‘x m a p(um) H (nn) G (un) +0(Om ¥ 3(x)

{m, =1
(3.24)
uniformiy.

Proor. The proof follows by Theorem 3.3 and by partial summation
(cf. {4], Theorem 421)
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TrEOREM 3.8. If the Riemunn hypothesis is true then for x=3 and fixed
positive infegers n and 1,

T P . 2 i .
Z /_ (”fr_ n) . _-ﬂﬁ[f n J(u)'\ +O(@(H”) xz_rsm(x)):
oy i wam) H{un) G{un)
(i, =1
(3.25)
uniformiy.

Proor. The proof follows by Theorem 3.2 and by partial summation
{cf. [4], Theorem 421)

In conclusion, we would like fo mention that an asymptotic formuia for
the sum

o y¥E(mn)
ai=x m?
{m, =

will be established in a separate paper.
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§ 1. Intreduction. It is well-known that a divisor d=0 of a positive
integer #r is called untitary if ¢ 0 = n and (d, 6) = L. We write d|ln to say that
d is a unitary divisor of 11, Aualogous to this notion the secoud named aunthor
(cf. [8]) introduced the notion of a bi-unitary divisor. A divisor d=0 of the
positive integer n i called bi-unitary it d6 = n and (d, 8)** = I, where
(tf, 8)¥* denotes the greatest common unitary divisor of both & and 4.

As usual, by a k-free integer, we wean a positive integer which is not
divisible hy the k-th power of any prime. Recently, asymptotic formulae
for the sums

Z q,.,(:_n)_r,r__(fn) and . _}’L(i”:”)

M m? wix NP
v, m—

with uniform: O-estiimates for the ervor terms have been obtained (cf. [9]§ 4.)
by the authors, where ¢{n) is the Euler totient function and ¢.(m) =1 or
0 according as m is k-free or not &-free and 5, (n: 1) denotes the maximal
k-free divisor of m wihich is prime to n. In particular, we note that
a, (0 01) = p( ), the maximal square-free divisor of m which is prime to
. bt is clear that p(nr: 1) = y(m), the maximal square-free divisor of m and
w2y = d(m), the maximal odd square-free divisor of m. Let % (m; 1)
denote the maximal square-free, bi-unitary divisor of n which is prime to
noand let +*F* (1) and %% () respectively denote the maximal square-free.
hi-unitary divisor of m and the maxiroal square-free, bi-unitary odd divisor
of m.

In this paper, we establish an asynmmptotic formula for the sum

2
mex m?
i, =1

VR 1)
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with uniform O-estimates for the error terms (see § 3) and deduce several
results as particular cases. Also, we improve the O-estimates of the error
terms on the assumption of the Riemann hypothesis.

§ 2. Preliminaries. Let w(nr) denote the M&bius function and let g(n)
denote the Euler totient function, p(r1) denote the Dedekind p-function (cf.
{4] p- 123) and j(n) denote the Jordan totient function of order two (cf. [4],
p. 147). Let H(n) be the arithmetical function given by

i (d)
(2.1) H{n)=n > -—= .
a% p{d) d

These functions have the following arithmetical forms:
{(2.2) ey = > p{d)d=n}f [I—L],

da=n pin P
(2.3) py= D p@d=ujf [1 +L] ,

do=n pln P
(2.4) Jm= 2 w@d =21 [l— lq—] ,

dé=n pln I

d) 1
(2.5) H{ny = un? e wz 12 [l — 4—] .
dz y(d)d !Ia plp+ 1)
Remark 2.1. 1t is clear that @{im)=rn, p(n)=n and L. O[—]—],
JOn n?
since
Jm=nrp I—L]:*nz[][l—-—l ] = Hz_
pln P ? P’ (@
(cf. [5], Theorem 280) where (s) is the Riemann Zeta function defined by
|

C(s) = — for s=1.

L.( ) mZ:l nr
Further

ok
H{m n?

since

SR IOt o |

Let {'(s) denote the derivative of {(s) with respect to3 and @(i) denote the
number of square-free divisors of 1. Let G{n) be the function defined by

. (-1 (p—1)
2.6 G = =7 7
(2.6) (m) ng[ prrE—

for n=1

and G(1) = 1.
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Let « and 8 be the constants given by

2.7 *=1I ‘ m]
(2.8) f=1 [1 _(—pﬂ_(;%(;—_—ll))]'

Let i(m) = 1 or O according as n =1 or n=>1 and note that {(n) is multipli-
cative.

Throughout the discussion x denotes a real variable =3, £ denotes
a pre-assigned positive real number, u and 1 are fixed positive integers. All
the O-estimates that appear in this paper are independent of x, & and n but
may depend on £. We describe this situation by mentioning the word “uni-
formly” at the end of each formula.

We need the following Lemmas te prove our main Theorems.

Lemma 2.1 (cf. [7], Lemma 2.3)
(2.9) y{(nm; ) = doZ:‘m #2(d) ¢ (d) 1{(d, n)).

LEmma 2.2, {cf. [T], Lemima 2.5)
(2.10) Y ) = > p(d @ ((dn) (8 n).

@521
LeEmma 2.3. (cf. [2], Lemnmma 3.1, s = 2). For x=3 and u=1,
(2.11) > L:MW[L]_
u? X

m=x  M?
(m,m=1

uniformly.
LEMMA 2.4

, if n=1,

e p (d) log d

2.12 =—
(212) glm= j()d]n p

if n=1.

im y(d)

@M) B(n=-22 5 LORD - VR )

log p__ _
(2.13) A(;;)E_.F_’,f_;") ZM“’ =’ . n=1,
m y(d) ‘

12 ANNALES — Sectio Mathematica — Tomus XXYV.
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, logp £ o
(2.15) C(n)=— i w(d) log d ]p|n pPap 1 imoa=1l,
. Hm i w(d)d | 0 Fon_ 1
o eld) B(d)
2.16) Dm)=——"t 5 #@OFD) _
™) H () a% p(d@)d
j logp_ it a=1,
FAP-D(F+p-1)
0, if n=1.

REmarK 2.2, Proofs of equalities (2.12) to (2.16) can be given in the
same way as the proof of the following:

- u(d) log d
2.1 z{M= — .. — i el
@17 a(m=- (n) PR

0, if n=1

which was given originally by DavenporT (cf. [3], pp. 293—294). For
alternative proofs of (2.17) we refer to Lanpau {(cf. [6], p—245%) and
BeErgmaNN [1]. In fact, DavENnpPORT used the notation w{(r) for z(n) defined

above.
Set

(2.18) F)y=S- w_Dlogp
' w1
Then we observe that
(2.19) AM+ B()—2C(m)—D(n) = F(n).
~ REmark 2.3. It is clear that F(n)= 0(@(n)) and g(n) = 0 (0 (1),
since

: {p—Dlogyp log p

F(n) = = =L =% 1=60(n)
p% (PP+p-1) ; (p—1) ,,Z

and
log p log p

Bin) = = = 2L =0 ().

p% (r*-1) pz'n (-1
LEmMA 2.5. (cf. [9], Corollary 4.1.3). For x=3 and n=1,

2,20 amgm)
( ) mzx m2
(m, m)==1
2 loox @) (2p*—1)logp
v [ " O G e |

+0(O (M x"'26(x));
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uniformly, where F(n) is given by (2.18) and &(x) is defined by
— A log*? x(log log x)~1%}, for x=3,
2.21)  8(x) = exp{ og? x (log log x)~¥?}, for x
1 for Q0=x=3,
A being a positive absolute constant.

Lemma 2.6. (cf. [9], Corollary 4.2.3). If the Riemann hypothesis is
true then for x=3 and n=1,

. p{myg(m)
(2.22) Z e
{nt,n)=1
ai® I (2) 2p*—1Dlogp ]
X4+p—2ol g F + .
“epmam [T e TS e )

+0(@ )y x w(x);
uniformly, where o(x) is the function given by
- -1 - e
(2.23) o (x) = exp {A logx (loglogx)~1}. for x=3,
1 for D=x<3.
Lemma 2.7. For =1 and n=1
(2.24) i L) g (m) H [

m=l fns !i (nf)
(m,n)=1

p*-1)(p—1)
p (p-+p— b
PRrooF. By Remark 2.1, we havc
; P(m) ‘fg (m)i((mr H)) =0 __l_
i ms H (m) ’ me
and so the above series is absolutely convergent for s> 1. Further, the gen-
eral term of the series is a multiplicative function of m and hence the series

can be expanded into an infinite product of Euler type (cf. [5], Theorem
286). Thus we have,

Zoopmerm) L alm)gt(m)i(mm)

m==] mSH(m) m=1 ms H(m)
{m,ny=1
_ S s(p) ¢ () 1P ) _ =i m)
e R oy (s
pip+1)
-1 (p+1)
1 —
{)’(I[ “(p+p—l)]
pin

Hence Lemma 2.7 follows.

12%
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LEmma 2.8. For s=1 and n=1

< ulm)g(m)logm

(2.26) 2 wHm
(m, =1
(7"~ 1) (p=1) ] (7"~ (p=1)logp
= - l_ )
{JI ps+1(p2+p_1) Z ps.l(p2+p_1)_(p2—l)(p—l)

p
pio atn

Proog. This series is uniformly convergent for s=1+e¢=1 and so by
termwise differentiation of the series in (2.24) with respect to s we get the
series in (2.25) with a minus sign before the sum. For finding the derivative of
the right hand side expression of (2.24) with respect to 5, we write

_ _=-p-1)
e {;I[l p“l(n3+p—1)]'
Then ” )
log £(s) — _ (==
BL©) %log[l p“l(p2+p~1)]
s0 that '
'y _ < . @*-Dip~-Dlogp
f(s) - PPt rp-D—(p*=D(p-1)

and this gives

o (=1 p-1 ] ("= (p—1i)logp
= 1— S
rey =1 pri(pt+p-1) 2 PP +p-D—=(p=D(p-1)

P P
pin afn

Hence Lemma 2.8 follows.
From (2.24) and (2.25) for s = 3, we have the following

220) 5 A H[lﬁ(pwl)(p—i) _Bn
mel  mCH(m) 5 U pli(ptp=1) ) G()
{m, =1 p,rn
(2.27) g ametimlogm
a =1 m? H(m) N
m, m=1

=i — H [I_M] Z___ (,U"—l)(p— l)]ogp -
p U P D] P = D= =D (- 1)

_fn s _(F=Dp-Dlep
G(m) 5 {p{(pP+p-1)—(p>~ 1) (p—-1}}

2
pin

where # and G(n) are given by (2.8) and (2.6) respectively.
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LEMmA 2.9, For x=3 and nu=1,

smgtm) _ gn (1

(2:29) 2 mHm G +O[xﬁ]’
(m,m=1

o s(m) g (m)logm _

(2.29) m%x —m3H(fn)
im m=1
- P (=D (p—1)logp +O[logx]_
G(m) " P +p-D-@E-1 (-1 x*

Proor. By Remark 2.1, we have

5, s o 5 1) <o[3 1) -o[L):

mex M H{m)

(o, =1 (m,n)=1
> p(m)g(m)logm 0 » dogmy
M m* H (m) mex M
(m,ny=1 (m, 1)1

:O[ 5 logm] :O[logx].
m=x m3 xﬁ

Hence (2.28) and (2.29) follow by (2.26) and (2.27) and the above two
O-cstimates.

LEmma 2.10. Forx=3 and n=1,
p(m) ¢* (m) F (m)

(2'30) méx m3 H(m)
(m, =1
- __ﬁﬂ__z (p—1p*(p*— 1) log p +O[logx]'
Gem) (PP +p—Dipt(p*+p=D=(p* = (p- 1} Xt

Proor. By (2.18) and (2.28). we have
u(m) g*(m) F(m)

(2.31)

= m* H (m)
(rm, 13=-1
w(m) ¢* (m) (p—Dlogp _

(mm%il mH(m) picm (PP+p—1)
() (p—1P¢*(3)(p—1)logp

1
5 e HO) (1 e D)
v.o=1 P p(p+1)
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#()) (p— 12 (p*—1)g*(8) logp _

po=x - pP(pP+p-—-1)2 §3H(6)
(pe, iy=1
(=1
~ 1P (p*—1)logp 8) ¢2(d)
(- 1p(p*—1)log s £08)¢*(8) _

psx PP +p— 17 S 62 H(S)
(p,)=1 (0, py=1

. (p—1*(P*-1)logp
p=n  PHPE+p—1F

ptn
{ pnpt(p®+p—1) +O[ﬂ”]}=
G{p* (PP +p-D—(pPP -1 (p-1)} X
_ Bn 1P -Dlogp

G(n) psx(P +p—1)p {2+ p— D)~ (- ) (p— 1)} .

i (p—12(p*—~1)logp
+0[— =
(2 o)

__ Bn 2 (p—1p(p*—1)logp
G(H) (p +r-Di{p (P +p-1}— (p"—l)(p—l)}
fn _ (p-1P(pP-llogp

G{n) B P+ p— D (P2 +p- 1) —(p? —l)(p—l)}

2oz P(PPp-1)
pn

+O( (p—l)ﬁ(p~1)logp\)

By (2.6) and (2.8) we have A -1 and note that
G{m)

B+ p= 1) (0 + p— D)= (0 D) (p~ 1)} = 17,

so that the second term in (2.31) is

0 (Z (p- 1 (pi—__;)rogp) _ 0(2 'ﬂ_gp) -

= N
74 ’ o !
logp logm] [logx]
=0 =0 -2l =0 —==
275 -ol2 ) o



THE MAXIMAL SQUARE-IFREE, Bi-UNITARY DIVISOR OF m, I1. 183

and further note that (p—12(p*— D= p(p*+ p—1)*, s0 that the O-term in
(2.31) becomes

(k35 ol o)

pin
since
< JB2 _ 5 (log x)
el ~
p=X Iy

(cf. [5], Theorem 425). Hence Lenuna 2.10 follows.
Lemma 2.11. For x=3 and n=1,

() g (m) f(my

2.33
( ) ey m* H (m}
tm, n=1
_ _ pu 5 (p—1)logp O[_}ogx}‘
G (n) n P4 p— D~ (P =) (p~ 1) x*
Proor. By (2.[2) and (2.28), we have
o - o alm)yg*(m) B (m) () g° (m) logp
3 . L - =
(2.33) m%x i H () ,g; m3H{m) pi"m p* 2]
(a1 (mr, =1
I #(8)g*(8) (p— 1) log p B
|
LEES LI L L ) (——— N ) N S
e PP [ p(p+1)] @)
B o #)ed)(p—l)logp
phEX fsapd(Pz-'rP‘])H(é)
(pa,m=1
(o, i)=1
_—— (p~1N)logp #(0)9*(8) _
pax P (P'+P—]) rizp 0P H(8)
pin & pm)=1
_— {(p—1)logp { 3 Bnp{p*+p—1) .O[Pz]}:
pzx pH (P4 p =) LG P+ p—- 1) - e*=N(p-1) X
pin
B (p—1)log p
G(n) pex (P +p—D— (p-—l)(p—l)}
pin

+0(] 5 (p~l)10gp)

X 2k pH(pt P 1)
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___Bn s (p—Dlogp
G(n) x {PrP+p-H- (p~—1)(p—1)}
gn S {(p—1)logp

Y6 £ W - - =D (p-1)

; (p—1)logp
+0 L ¥
(x2 %f p* (p2+p—l))

we have Eﬂzn—)--:l and p{p*+p—D—-(P-D{p—1)=p*(p—1), so that
f

the second term in (2.33) is

o(z157) o) (257 (%)

; » px P m=x I x
pin

and further p*>(p*+ p—1)= p—1, so that the O-term in (2.33) becomes

I
0 (L_ > _ie_gﬁ) _ o[_l__ 5 'Oﬂ] - O[_Oﬁ]
Xt pax P X* pzx P x=
pin

since

> 18P _ 0 (ogx)

p=x P
(cf. [3], Theorem 423). Hence Lemma 2.11 follows.

Lemma 2,12, (cf. [10], Lemma 2.2, s = 2). For x=3 and u=1,
3y v lem_ _@JW [ﬁ(u)+ ”(2)]+O[lngx]_
u 4

m=x m? (2) X
(i, wd= 1

uniformiy.
§ 3. Main Results. First we prove the following
THEOREM 3.1. For x=3 and jfor fixed positive infegers u and n.

3.1 2(mn)
D ngzx me
{m, w)=1
aun f(u)

[ gx~r?+ﬁ(u)+F(u”)+Z (pz(zp:)_(;izfifl)]—i_

+0(@(un) x4 (x)) ;

w{un) H (i)

uniformiy.
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Proor. By Lemmas 2.1 and 2.5, we have

> 1m0 s L5 w@ee-

m=x m? m=x M do=m
(m, wy=1 m,u)=1 d, m=1

Ly FO@ s L RO

daozx d* &* S=x 62 d=xia a*
(d o, i ={d, i)=1 (o, 11=1 {d, und=1
> 1 a i 1® [ ogx—logm + &2 )+},( )
= - - y—- ur) +
mex M| Z(2) p(un) H(un) ’ £(2)
{m,w)=1

_(@p*=Dlogp 5
+2 (pg_1)(p_+p_l)}+0(@(un)(x/m) / 6(rfm))}
(2

o 3 it l[l gx by
£(2) y (un) H (un) 1 £(2)

Cp - 1logp 120z
Z (p2~l)(p2+,ﬂ 1) mﬁx m? méx m? J+

=4 F(un)+

=1 {r,i)=1
I (x ) (x
Q[0 un | dl—I}-
( ( )mgx mz[m] [m])
(m,u)=1
Now, applying Lemmas 2.3 and 2.12, we obtain
o 3 43
(3.2) S yimn) wlfn
M= m? L(2)w (un) H (un)
(i, w)=1
2 _
.{[Ing-{—y——-’ (2 )+ F(un )+Z (2‘0 Dlogp ]
£(2) —D(p*+p-1)

_[C(zl_z](u) [ ]] [ H(Z)J(u)[ﬂ( )+:’((22))] O[mfx”}+

+0[9(un P m_[ ]—m [f'n_]]'

By (2.21) it is clear that x*é(x) is monotonic increasing for every
e=0, and so for 0<g=1/2, the last O-term in (3.2) is

ofewn 2 LN )
(mr:?aﬁ)il

= (9 (un) x= 6 (x) (-2 Z m(—:;;z}-rc] =0 (@ (un) x-12 5 (x)) .

maEx
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Further, by Remarks 2.1 and 2.3, it is clear that each of the first and
second O-termis that arise in (3.2) are each

-0 [-9 (””)-'“g:‘-] = 00 () X * 4(x)).
RY

Now Theorem 3.1 follows from the above discussion and (3.2).

CoroLLARY .11 (¢ = D). Forx=3and n=1,

(3.3) \ V{’??iﬁ)_ _
mex f11-
P 2_
- ..fn_.__._ l(]g X4y + F (n) + _;(2E¢(E ._D
() H (1) v (PP D+ p- 1)

+0(@ () x M (X))
uniformly.

CoroLLarY 3.1.2. (0 = 1}). Forx=3 and u:-1,

R ¥iri
(3.4) D ;) o
m=x =
(m,uy |

oz (u) flu) l

T () Hw og X +y AU+ F )+ 3 -

S -+ p -]

- 0@ ) x12 (X))
uniformiy.

CoroLLary 3.1.3. (0 = 2}, For x=3 and 11,

o o{m)
3.5) Rl S .
( m%x m*
{r, )= |
Bt ] ()

Ip — '
- Alogx+»+ g+ F {20+ > —.‘(_p 1)__I9g__;_)_ JT
p (2u) H (2u) p (7P D{(pP=p-1)

+ OO (2u) x~ 12 H (X)) :

uniformly.

REMARK 3.1, Corollary 3.1.1. has already been established by the authors
(cf. [9], Corollary 4.3.3). Formulas (3.4) and (3.5) in the case 1 = 1 reduce
10 those results already established by the authors (cf. [9], Covoltaries 4.3.4
and 4.3.5).

Tueorem 3.2. [f the Riemann hypothesis is frue then for x=3 and for

any fixed positive integers u and n, the sum of the error terms in (3.1) can be
replaced yy O(O () x=° o (x)) where w(x} is given by (2.23).
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Proor. Following the same procedure adopted in the proof of Theorem
3.1 and making use of Lemima 2.6 instead of Lemma 2.5, we get (3.2) with

ofewn 3 L [%]_ma[il)

m=x nt FTI
\ muy=1
replaced by
I fx 173 rx
0 un) [—] m[—] .
( mz_.;x mElm m
(i, )= |

since e (X) is monotonic increasing this O-term is

0 [0 (un) x*Pox) > m‘"*’*] = 00 (un) x*" w(x)}.
t’nf.lf‘-'—iil
The rest of the argument is the same as in the proof of Theorem 3.1.

CoroLLARY 3.2.1. (u = 1). If the Riemann hypothesis is true then for
x=3 and n=1, the error terms in (3.3) can be rcplaced by

(O (m) x5 w(x)}.

CoroLLARY 3.2.2. (n = 1). If the Riemann hypothesis is frue then for
x=3 and u =1, the error terms in (3.4) can be replaced by

O{O () x—*5 0 (x)) .

CoroLLARY 3.2.3. (7 == 2). If the Riemann hypothesis is true then for
x=3 and u=1, the error terms in (3.3) can be replaced by

0 (6 (2u) x~3% 0 (x)) .

ReEmark 3.2. Corollary 3.2.1 has already bheen established by the
authors (cf. [9], corollary 4.4.2)

TueoreM 3.3. For x=23 and for fixed positive integers 1 and n,

}’i(fz_ﬂ _ xfu ”Aij(u) -
(3.6) 2 T v (un) H (un) G(un)
(m,u)=1

(2pt-1)logp
(P-1)(p*+p-1)

[Iog X4y + /) + Flum)+ Z

(p2+p~l)(p P+p—1— (2= 1) (p—1))

+0(6(un)x23(x));

_ Z (=D Eppr—dp—2p+2)logp :l

uniformiy.
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Proor. By Lemma 2.2 and Theorem 3.1, we have

»¥¥ (1 1 1
> F (-,,—) = ¥ — > ada@i{&n)y(s;n =
m=x m= m=x M gre_m
(m,i)y=1 (m,u)=1 (d, 3= 1
_ s p(d) g (d) »(; 1) _ s w(d) g (d) r(6:m) _
d2émx d* * A=y at s xd? &*
(da, w)={d,¢)=(d, 1)=1 (4, duy=1 (4, diy=1

5 a(d) ¢ {d) {_‘g dun® J(du)

d=yx at p(dur)y H (dun)

(d, ur)y=1

[log—'-+? +Bldu)+ F{dun)+ 2, (p-(ip;) (;:)Jroﬁf l)]+

+0(O (dun) (x/d?) % & (x,mz))} - 5 M@,

- 4
d=fx d
(d, un)= 1

log x—2logd+v+3(d)+ 3 (w)+ F(d)+

{ wun’ J (u) J (d) d
y () F (i) p(d) H{d)

(ng' l) ](lg P N —1.9 _
+ F(un)+ % G ])(p2+p_])]+O((-)(un)9(d)(x/d) a(x/dz))}

_aun® J(u) . (2pP—1)logp 7
T y(un) H (un) {[ B +ﬁ(U)+F(HN)+Z (- (p2+p—1)

5 pdye*d) 5 #d)g?(d)logd

o £ () By a H{d)
(d, ur)=1 {d,ury=1
w(d) ¢* () B (d) ¢ (d) g*(d) F (a)
* @Zﬁ EH@ Er & H{d) }+
(d,un)=1 (d, eny=1
O(d) ( x 1 X
ofe B\l ot I el RO
( (un) dg:{} a3 [de] [ﬂm])
(d, =1

Now, by Lemma 2.9, 2.11 and 2.10, and by Remarks (2.1, 2.3) we have

_ Cwun® J{u) (20" -1 log p ]
w (uny H (un) =D(pP+p-1)

l[ 0g X+y+ 8 (u)+ F(un)+ Z =

e <))
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) Bun Z o(pg—l)(p—l)logp +O[logx] n
- Gun) pip+p-1)—-(p*-D{p-1) X

<21 un
pun (p—1)logp [ng]
+0 -~
+[ G 3 @G p-N-- D=1 | x }“
L Z . (p-1p(p*—1)logp
G 5 (= p= AP @+ p—D—(F D=1}
log x ] oflo O (d) [_x_]*”glS x]
[ . ]]J+ ( (1111) .ﬁzpa = | [d2 )
W, um=1
(3.7) ™ (m; ) _ aputnt J{uy
' = e p(un) H (1n) G(un)
m,uj)=1

[log X+y+pu)+ F )+ Z p(:ip;)—(‘;)fsf 1y

O i i e d W R
» (PP+p—D{pPP+p-D—(p-1)(p-1)}

pfan
, o O (x ) (x
O(O(un) 3 [dz] a[dz]).

{d, iy —1

since x7 4 (x) is monotoric increasing for every =0, and @ (m)y=z(m) =
= O (m*) (cf. [5]. Theorem 313) where = (m} is the number of all divisors of
m, the sum in the second O-term of (3.7) is

> )

m=¥x
(m,ur)=1
mays M m? mn? m®
{rm, u_njzl
5 (1) 2 G (m
=0 (.v-a(x) 5 Qi) x ) :o(r”—a(x) > _2(__’ _
- mt 2. meys M
L (:r:n;n)x—l (i, w1
= {) —le S =) '-—1.-"2 S(x)).
lA (x} pre 3£J {x (x))

Hence Theorem 3.3. follows,
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CoroLLary 3.3.1. (&7 = I). For x=3 and n=1,

(38) 2 }’_*f ('m’_'fl) — _?'_F?_”‘ [ ogx+ 9yt F (n) +

mmx M w(n)H(ﬂ)(‘ (n)
_@2pP—Ylogp |
Y -
(p—N2p"+p*—4p*-2p+2)iogp
2 1)}

(p?+p—-D{p (P +p-D—-(pFP-1{(p-
+0(O () x 12 §(x)).

p!:l

uniformly.
CoroLLary 3.3.2, (11 = [). Forx=3 and u=1.

(3.9) Z }u** (m) .. w3 utg () [lﬂg X+ v+ B+ Flu)+-

m=x m* H(II)G(II)

{m,u)=1
, (2p*—1)logp
CE (- D(pErp-)

oy (p—-N2p+pP-Ap*—2p+2)logp N
I (e - D (PP p— 1) —(p2— D (p— 1)}
+0(O ) x~12 5(x));
uniformly.
CoroLLary 3.3.3.(n = 2). Forx=3 and u=1:
. 5% (m) 16apu® [ (u) :
3.10 MR i = JA 11 e F(2
G102 T en Hen 6 o [Og“ yHBm T Eu)
(m,a)j=1
- (2p*~-Nlogp
- Z 2 . — -
r (PP-D(E*+p-1)
. Z N @ptpr—4pr—2p+ ) log p
iy (Prp-D{p (PP +p-)—(p-D(p-1)}
+0(@2u)x "o (x):
uniformiy.

CoroLLary 3.34. (=1, 1= [). For x=3,

y** (m) (2p—T)logp
3.11 = flogx g+
( )H:Zx f[log Z pP-l(p+p-1)
S (p—l)(2p‘+p i 2p+2)10gp ] 0 (x-2 5(x)) -
FZ;:‘(P'H? D{p (P> +p—1)—(p*— ) (p— 1)} ol ()

uniformfiy.
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CoroLLARY 3.3.5. (n=1, n=12). For x=3,

. o¥ (m) 64 (2p*—1}logp
(312') T Tt = ‘_—_—05:)) ]09_x+y+ e
ngx m 7 [ Z (r=n@*+p-1)

. - DEp+p—4pP—2p+2logp ]
w, =D e = D=t -1 (- 1)
p o

+0 (x5 (),
uniforinly.

Tueorem 3.4. If the Riemann hypothesis is true their for x=3 and for
Jixed positive integers 1 and n, the sum of the error terms in (3.6) can be
replaced by

0 (0 () x=33 w (x)) .

Proor. Foliowing the same procedure adopted in the proof of Theorem
3.3 and making use of Theorem 3.2 instead of Theorem 3.1, we get (3.7)

with
Gy x Yy 'e X
O {un B 6| —
( (ten) m%;x m? [m‘l] [mz])

(m, ur)=1

replaced by

- - -3.'3 .
0 ((—) (3 M[—"—_-] 0)[ * ]) .
i ¥x et m? Fick
\ (m,un)= 1

Since w(x) is monotonic increasing and @ (my=v(m) = 0(nr), (cf. [5],
Theorern 315}, this O-term is

|\ m=¥x
X (m,um=1

0 {(—) {umx—=**o{xy 3 @) = 0@ (um) x ¥ w(x)).
mvs

Hence Theorent 3.4 follows.

CoroLLary 3.4.1. (¢ = 1). If the Riemann hypothesis is true then
for x=3 and n=1, the error terms in (3.8) can be replaced by

OB (mx P w(x)).

CoroLLary 3.4.2, (7 = I). If the Riemann hypothesis is truc then
for x=3 and w=1, the error terms in (3.9) can be replaced by

0(B ()X % w(x)).



192 SUBRAHMANYAM, P. AND SURYANARAYANA. D.

CoroLLARY 3.4.3. (n = 2). If the Riemann hypothesis is true then for
x=3 and n=1, the error terms in (3.10) can be replaced by

0(0 2u) x> w{x)).

CororLary 3.4.4. (1t = 1; n = 1). If the Riemamm hypothesis is true
then for x=3 the error term in (3.11) and that in (3.12) can be replaced by

O (x~3 w(x)}.
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VARIETIES WITH DIRECTLY DECOMPOSABLE
DIAGONAL SUBALGEBRAS

By
IVAN CHA DA

Pierov, Czechoslovakia

{ Received October 7, 1650 }

The concept of diagonal subalgebras is frequently used in characteriza-
tions of polynomially complete algebras and pelynomial interpolation, see
[6], [7] and references there. Since they are subalgebras of a direct prod-
uct, it is important to know under which conditions they are determined by
their projections. In other words, it is a generalization of the problem solved
in [5] for congruences, if instead of congruences other relations {not neces-
sarily symmetric or transitive) are considered. The first attempt in this di-
rection was done in [3] and for lattices and similar algebras this problem is
solved in [2], provided these diagenal subalgebras are symmetric (so called
tolerances). One characterization of direct decomposable diagonal subalge-
bras of a given algebra is contained in [4]; it is based on the notion of non-
indexed products of algebras. The objective of this paper is to give a poly-
nomial characterization of varieties having directly decomposable diagonal
subalgebras. For congruences, [5] contains such characterization in the
form of Mal'cev conditions. For general diagonal subalgebras, these con-
ditions are derived in the form of v 3-conditions similarly as for lattice iden-
tities in [1].

1. General polynomial conditions for direct decomposability

Let % = (A, F) be an algebra. The set /I = {{a, a); ac A} is called a
diaggonal of the direct product 2. Each subaigebra % of X% contain-
ing A is called a diagonal subalgebra. Clearly A and AXY are diagonal
subalgebras. In other terminology used by the author e.g. in [1], diagonal
subalgebras are reflexive binary relations on % with the Substitution Prop-
erty with respect to F.

Denote by ®R(N) the set of ail diagonal subalgebras of AX¥. Clearly
() is a complete lattice with respect to set inclusion, where the lattice
meet coincides with set intersection. Denote by V, the join in 2(%). If
a, b€ A, denote by R 4(a, &) the Jeast diagonal subalgebra of WX A containing
the pair {a, &). The following lemma is obvious

13 ANNALES — Sectio mathematica — Tomus XXV,
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Lemma 1. Let A= (A, F), a,0€ A, R.cR(N) for yeI'.

(a) {x, ¥Y€R (g, b) if and only if there exists a unary algebraic func-
tion ¢ over A such that x = g(a), ¥ = ¢(b).

(b} (x, yy€ V 4{R,; v€I'"} if and only if there exists an m-ary poly-
nomial p over U, indices y,, ..., y,€I" and elements a,, ..., 4,
&, ..., b, A such that {a&, b)eR, for i=1,...,m and x =

" tm

= p(ali Tt am)! y = p(blt v ‘!brn)'

Derinition 1. A variety (@ of algebras has directly decomposable diago-
nal subalgebras if for each 9, Ve @ and every R <R (A X W) there exist S¢
eR(A), TeR(B) such that R = SxT.

DEeFINITION 2. A variety (U of algebras hias the property (P) if for each
A BVe@ and every R,, R, ¢R (M), 8,, S.€R (B} the following identity is
valid
(R1 VARz)X(SI v Bsa) - (Rlxsl) v AXB(R;:XS;J) .
Remark. If instead of diagonal subalgebras only congruences are con-

sidered, the foregoing identity is true in every variety, [5]. However, in the
case of general diagonal subalgebras such assertion is not true.

THEOREM 1. Far a varicty of algebras <0, the following conditions are
equivaleni :

(1) €© has the properiy (P).

(2) For every n-ary polynomiul p and everv ni-ary polynemial ¢ and
each O=k=n, O=h=m there exist an (c+d)-ary polynomial s and
polynomials: k-ary I, lary u, (i=c) (n—k)-ary v (n—hyary
w; (j=d) such that

PR Xy = S X V(s -0 X))
Q(xlr ety xm) = S(I.l!- (xl-' e xh)r wj (xh-‘—l' e xm)) -
Proor, Clearly
(Ry VaR)X(S: VaS)2(R; X5,) Vaxs (RyXS,)
for each A, Be@ and every Ry, R, €R(X), $,, S,€2(B). Prove the converse
inclusion only.

(}=(2): Let p be an n-ary and g an m-ary polynomials over 7} and

kef0, ..., n}, he{0, ..., m}. Let

U=y (g ooy Xy Yy ovsVady D= Fo (g ooy Xy Yy s Vi

be free algebras in (@ with generating sefs

{xl’ e xﬂ’ .1'}1" Tt !J’n}
and
{xl' ""xm’ ,Vl’ ""ym}!



VARIETIES WITH DIRECTLY DECOMPOSABLE DIAGONAL SUBALGEBRAS 195

respectively. Put
Ri= ValRa(xn y)s (=K}, Ry= Va{Ra(x, y); k<i=n},
Sy = Ve{Relxp ¥p); j=h), S = Va{Rg(x;, y;); i<j=m}.
Hence R, R, R (), S,, S,€Z(B) and, by Lemma 1,
P pYNEVA{RAGGLY) i=1 ..., 1} =R VR,
G gy Ve Ralxpy) =1 .-..mp=8VgS,.
By (1), we obtain
A g (xPh [P YIEYPD R XS)) V axa (RyXS,)
and, by Lemma I, there exists an (¢+ d)-ary polynomial s over @ such that
[p(x). q(xj)] =s(la,. b,) . la. 0 b))

(p(¥:), (Y1 = s([al bils - - s s i)

(1)
for some
{a, &1 (o, B/ eER, X8, for i=¢,
{lap b;]. [al, BipER, xS, for c¢=i=c+d.

Suppese i=¢. Since R, = V, {R,(x, ¥); i=1,...,k} and §, =
= Vg{Rg(xpy;)i j=1, .... 1}, there exist (by Lemma 1) algebraic func-
tions ¢; (k-ary) and ; (#-ary) such that

@ =g (X, X)) and b =y (X)),

@ =q; (oY) and b=y, (M, -V

Since ¢, y; are algebraic functions over free algebras ¥(, 3, there exist poly-
nomaials {*, u¥ such that

PiEn - E) =G e X Xy Vo L V)
Pl - ) = U (L e X o X Vi V)

Analogously it can be proved the existence of suitable v¥, wk (for c<i=c+d)
such that (I} implies

p(x) = s(tF(x .-, X0 X ¥, Vi (X -0 X X ¥),
py) = S(t? (e - Y X ¥ VE(Veers -0 Yoo X yi')) .
Hence it is clear that i* does not depend on the j-th variable for j=k, thus
e, - XY = LG LB

for some k-ary polynoniial £ over ©. Analogously it can be shown for v¥.

If ¢ is used instead of p, it can be shown also for uf and w} whence (2) is
evident.

13%
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(2)=(1). Suppose {a, bYE(R, V1 R,)X(S,V5S,), where a = [a, 4],
b= [b, b,]- Since {q,, 0,YER, VR, and {b;, b,5€S, Vg S,, by Lemma |
there exist an n-ary polynomial p and an mi-ary polynomial ¢ and elements
X, y;€A and xj, y;€ B such that

a =px,..x%)
by =pOy, .., ¥, where (x,yHeR, for i=k
(x, ¥YER, for k—<i=n
and
ay = qxgy - x;n)
by = ¢, .- ¥m) where (X5, vpeS, for j=h
XL Yp€S, for fiwj=m
for some ke{0, ..., n}, hef0, ..., m}. Hence
([t (xrs - oo Xy 15 (XT, -5 X
[y - v w0 - VR ER XS,
([1’;‘ (Xt -5 X, W (Xpevr - » X
e -2 W0 - S VIR ER XS,
and, by (2), also {a, &€ (R, X8}V asxs (R, XS8.).

CoroLLARY. Let (@ be a variety of algberas. The following conditions
are equivalent:

{1") For each ¥, Bec@ and arbitrary R.€2(N), S, @ (B), yeI" (I has
an arbitrary cardinality), we have

ValR p€IpX V p{Siiv€l} = Vaxs {R. XS} veT}.
(2"} @ ftulfils the condition (2} of Theorem 1.

Proor. (1"y=(2") is trivial (by Theorem: 1). Prove (2)=(1"). The inclu-
sion 2 in (1") is evident. Prove the converse inclusion. Tt can be easily done
for I" = {1I, ..., n} by induction. Suppese

{a,6) = (a1, @], [, bl €V 4 {R y €T XV p {Sip €T}

By Lemma 1, there exist an s-ary polynomial p and m-ary polynomial
g with

a = pxy, .- x), b=py, . . ..y forsome (x, _1-’,-\)ER;:‘- '
By = q(5hy - X B Q- ) Tor some (5 yeSy,
for v, ;€ I'. Accordimgly
byevValTsi=1...,mxXVe{Seif=1,...,m.

However, for finite index sets the inclusion is fulfiled by the assumption,
thus {a, bY€ V axs {(R,XS,); yeI}.
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LEmma 2. Let ¥, % be algebras of the same type satisfying the identity
VAXB{(R'/XS}'): yel} = VA{R:'; ?’EP}X VplS,;yell)
for an arbitrary index set I' and each diagonal subalgebras R,e® (%),
S, €2 (B). The following conditions are equivalent:
(a) If Rc® (UMW), there exist R €@ (A) and R,e® (B) such that
(b <o, 0)eR implies R, (ay, ,)XRy{dy, 8,)SR, where a = [a,a,]

- | ERED
Proor. (a)=(b) is evident since R ,{(a;, b)) R, Rp(d,, b,)CR,. Prove
{b)=(a). Put
Ry = {{ay, by); {[ay, ], [0y, y2])€R  for some  x,, y,€ B},
Ry = {{ay, by); {[x1, o, [y, B:.10€R  Tor some  x,, ¥, € A}.
Clearly R, €2 (), R,cR(B) and
Ry = ValRa(ay, b)) {(a, b)eR},
Ry = Vg {Rg(ay by); (4, 1)ER}.
By (b) and the assumption of Lemma 2,
Ry X Ry = Vaxs{Ralay, b)) X Ry (ay, b,); (@, e R}JER .
The cenverse inclusion is evident.

Treorem 2. Lel 0 be a variety of algebras which has the property (P).
The following conditions are equivalent :

(3) 7O has directly decompeosable diagonal subalgebras
{(4) For any two (n+ )-ary polynomials p, g there cxist k=0 and a
{k-+ 1y-ary polynomial r and a (n+2)-ary pelynomials t,, ..., 1,
Wy, ..., Wy such that
p(x’ zl’ st zrl) = r(x! tj(x’y! zl! = zn)) ]
P(J"szl, -y zn) = ”(Jf, t_;‘(x!y! Zyy - - -:zn))J
G, 2 .2 = (5w 0,2, ., 2.))
f?(}’: Zl! tttr zn) = ."(y, wj(x!y’ zl: " '!zn)) "

Proor. (3)=>(4): Let p and ¢ be (n+ 1)-ary polynomials over (@ and
FrooalX, ¥, 2y, ..., 2,) a free algebra in (7 with the generatig set {x,y,2z,, ...,
2.}, For the sake of brevity, denote

GO=p2, ..., 20 L=0062,...,2,),
dl”:p(y!zl)--'lzn)! d:Z:q(y’zl!"'lzn)'

By Lemma 1,
{en 1 [dy D ERA (X, MIXRA(X, ).
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Since @ has the property (P), the assumption of Lemma 2 is satisfied (by the
Corollary) and it implies

{en, & [y daPER A a ([x, X, [35 Y] -
By Lemma |, there exists & unary algebraic function ¢ over ¥ such that
el =g (xx]) [dyd] =y, ¥]D,
i.e. there exist a (k + 1)-ary polynomial r and elements [z, §,]€¢ AX A with
ley &) =1l x], [z, Brl - ooy [ow B D)
[du do] = r [y, ¥]s loa, Buks -y [os BiD)-
Since «,, p5; are elements of F,.,(x, 3, 2,, ..., z,), there exist (1 + 2)-ary poly-
nomials {,, w, such that
a; =50, 2 - 2 A=Wy, 8, 2.

Whence {4) is evident.

®H=@3): Let A, Bc@ and Re@(AXxB). Suppose (g, hH)eR, ie
Raxe(a, YR for a=[a, a), b= [b,, b,]. By Lemma 2, it remains to
prove the inclusion

Ra{a, b))XRg(a;, 0)CR.

Let {x, ¥YeR (ay, b)XRy(a,, b,). Then (x;, ¥ 3eR,(a,, b)), (X, ¥.)€
€ Rg(a,, b,} and, by Lemma 1, there exist an {n4 1)-ary polynomial p and
an {(m+ 1)-ary polynomiai ¢ such that

X = P(Gl. ¢y, ...,(.‘_,,_), h= p(blsfli ...,C,,_),
Xa :q(abdl! "‘!dm)’ y.‘! ZQ(bg, d]: "'!dm)

for some ¢; of I and d; of B. Without loss of generality, suppose m = n.
By (4)
x, = r(a, t(ay, by, 0, .00, 0))

_Vl = (b}.! tj (al! bp C[! S | cn))
X, = r(a2’ wj (02, bz! dl’ e d"-)) !
yo = r(bm Wj (‘32; bz,- dl! I ] drl)) "

and

By Lemma I,
x, 5y =[x, ], [V, V2D €Raxs ([ay, aul [8n B DER
and (3) is proved.
THEOREM 3. For a variety U, the following condifions are equivalent:

{A) @O has dircctly decomposable diagonal subalgebras;
(B) @ satisfies the conditions (2) and (4).

Proor. By Theorems 1 and 2, (B) implies (A). Prove (A)=(B). Let
A, B, Ry, RyeR (W), Sy, S, €R(B). Clearly

(Rl XSI) VAxB (szsz)g—(Rl VA Rz)X(SJ. Vﬂsa) .
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Since @ has directly decomposable diagonal subalgebras, there exXist
T,€2 () and T,¢72(B) such that

(RIXSI)VAXB (RQXSQ) = T]_X?—:ZC(RI VA R?)X(sl \\/{B Sg) ¥

whernce
TIQRIVARQ, Tg.c_sl Vssz.

However,
Ry = pri (R XS)Cpr, [(Ry XS) Vaxa (Ry XS5},
Ry = pry (R X S)pry [(Ry XS} Vaxes (R X Su),
whence
RI Voa Ragprl [(R] Xsl) VﬂxB(RzXS‘z)] = Tl ’
therefore

Tl :Rl V,\Rz‘

Analogously we can prove T, = S,V S,, thus @ has the property (P).
By Theorem 1 and Theorem 2, also (B) is satisfied.

2. Applications in some varieties of algebras

Tueorem 4. The variely of all lattices has directly decomposable diaganal
subalgebras.

Proor. Let p or ¢ be an n-ary or an m-ary lattice polynomial, respec-
tively, and O=k=n, O=sh=m. Put c=&k+h+, d=n+tm-—k—-h+1. Put

S0 Zengd = @ADEL 2 2 2 )Y

V(2o g AG(Zpans <+ <5 Zjoe Znenear - - o1 Ze_gm1)) s
n4m
A, oo X)) =x, wix, ..., x)=0G= vy x, for i=k,
f=1

flxy ohnx)y=0G, wixy, ...,x)=x,_, Tor k<i=k+h,
n-Lm

Ly oo x) =G, wx, .., x)=L= p X,
f=1

ViXpe o Xl =X Wiy, L X)) =G for f=n—k,
Vi s X =G Wi, X, ) =X, for o n—kej=d—1,
Pe(Xy, LX) =L walx, LN, =0
Then
S{h, ool Vo) =Xy -, X)),
Sy, .. U, Wy, Wi =q{x5, ..., Xp)
thus (2) is satisfied. It remains to prove the condition (4). Let p and ¢ be
(rn+ D-ary lattice polynormials. Clearly
p(xl ZL’ i "z?!) = (GOAp(x’zl’ T zﬂ))v (LUAq(x’ZU ety Z'!)) ’
PO 22 = (Go AP 2a o 2D VAL AT 21y - 2),
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q(‘\'szll "'!zn) = (LGAp(xlei "'!zn))V(GnAq(x'zU ""zn))?
(:"‘(.vﬁ zl’ b '!z.r:) = (Lf}/\p(.v! Zl! - -,z_,!))V(_GoAQ(}’| zl' "'!Zn))’
for

i=1 i=1

G, :xVy\f[ ¥ z;], L, =-\'f\.Vf\[ A 35]’

whence r, t; and v, are evident. Thus also (4) is satisfied.

THEOREM B. Let (0 be a varicty with twe binary and two nmudlary opera-
fions: 4, -, 0, 1, satisfying the identitics

X+0=04+x=1.-x=x-1-=x
0-x=0=x-0.
Then @) has directly decomposable diagonal subalgebras.

The proof is similar to that of Theorem 4, see e.g. [4].

3. Directly decomposable folerances

A folerance T on an algebra A is a symmetric diagonal subalgebra of
AXNU, i.e. {a, byeT if and only if (b, a)eT, see [1], [2], [3] and numerous
references there. Denote by LT () the set of all tolerances on an algebra
%, By Lemma 1 in {1], LT () is an algebraic lattice (with respect to the
set inclusion). Denote by T, (a, #) the least tolerance on 9 containing a pair
fa, 8.

Lemma 3. Let A = (A, F) and a, be A.

(a) {x,v)eT,(a, b) if and only if there exists a binary algebraic func-
tion ¢ over 9 such that x = ¢(a, &), ¥y = ¢(b, a).
(b) The lattice LT (2} is a sublattice of 2 ().

For the proof, see Lemma [ and Lemma 2 in [1].
Now, we can define direct decomposability of tolerances:

DeriniTion 3. A variety @ of algebras has directly decomposable toler-
ances if for each A, B and every TeLT (U xB) there exist e LT (A)
and T,€ LT () such that T =T, xXT,.

Evidently, i <0 has dlrect]y decomposable diagonal subalgebras, it has
also directly decomposabie tolerances. Also the condition (£) can be easily
formulated for tolerances and Theorem 1 and Lemna 2 remain valid in this
case. If we use Lemma 3 instead of Lemma | in the proof of Theorem 2, we
obtain the following characterization:

THEOREM 6. For a variety (0, the folloving conditions are equivalen!:

(Ay) (O has directly decomposable {olerances;

(B,) O satisfies (2) and for any two (nn+ 2)-ary pelynomials p, ¢ there
exist a (k4 2)-ary pelynomial r and (n+ 2)-ary polynomials t,, ...,
iy Wy, ..., W, such that
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peav,z, oLz =rnty g, o 2)),
PV E, a2y =r(n Xy, 2, - 2,))
QY 2y, - 2) =1 (G Y, WGV, 2, - 2,))
G2, - 2) = WY, 2, - 2).

This result is an essantial generalization of resuits derived in [2] and [3]. By
Theorem 4 and Theorem 5, also the variety of all lattices and each variety
with -+, -, 0, 1, satisfying the prescribed identities have directly decom-
posable tolerances.

Remarxk. Although the direct decomposability of diagenal subalgebras
implies direct decomposability of tolerances, Theorems 3 and 6 show that
the converse statement is not frue in a generaf case of a variety.
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S. HarTMAN and E. Marczewskr in [1] have considered some aspects
of convergence in measure. This paper deals with similar kind of problems
related with more general type of convergence.

Let (X, &) be a measurable space Let “c & be a proper o-ideal of sets
such that every family of disjoint sets in & — 2 is at most denumerable (so
called countable chain condition, inj abbr. C.C.C.). Let (Y, o) be a metric
space. For a set Ac Y we shall denote by Fr A the boundary of A, ie.
AN(Y—A), and by Int A the interior of A. A mapping f: XV is §-
measurable if and only if f~!(B)¢d for every Borel subset B of V.

We shall say that Z-almost every point of A X has some property
W if and only if the set of points in A, which have not this property belongs
to the o-ideal &i. In that case we shall say aiso that the property W holds
Z-almost everywhere (abbr. ~/-a.e.) on A.

DerINtTION (See [2]). We shall say that a sequence {f,}, n¢N of S-
measurable functions transforming X into Y converges with respect to (abbr.
wrt) the o-ideal o to the J-measurable function f transforming X into ¥V
(abbr. f,—f wrt Z) if and only if every subsequence {f,_} of {f,} contains
a subsequence {fpmn} convergent “i-a.e. to f.

DerFINITION {(compare [1]). We shall say that a sequence of sets £, ¢d,
1€ N converges with respect to the o-ideal o to the set £<4 (abbr. E, ~E
wrt &) if and only if the sequence {y, }, n€N of characteristic functions of
E, is convergent with respect to the o-ideal -7 to the characteristic function
of E.

It is easy to see that the sequence {y. } of characteristic functions of E_

is convergent J-a.e. if and only if lim sup E, —l]m inf £,¢5 and 1, = LE
11—~ d-ae. if and only if (E\Ilm !nfb )U(]lm Sup E,,\E)EQ Obviously

() ¥ E,.—~E wrt & and F,—F wrt 3, then (E,UF)~EUF wrt 3,
(E.NF)~EUF wrta, (E,—F)-~E—F wrt 5.
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A class 7 of Borel subsets of YV is called a basis of Y, if every open set
(1c. ¥V is the union of a denumerahle subclass of 7). A hasis @ is called an
additive hasis of Y if union of any two sets of (@ belongs to 0. Obviously

(i) If (@ is a denumerable hasis of Y, then for every =0 the class of all
sets ¥ €70 such that 8(V} = ¢ is again a hasis of V.

(iii} 1f ¥ is a separable mefric space {i.c. if there is a denumerable hasis
of ¥ then every basis of ¥ contains a denumerable basis.

Now we shall prove that

(iv) For every S-measurable function f: X —~ Y the class 77 of all open
subsets (o ¥V osuch that f=1(Fr ()¢~ is an additive basis of V.

The relation Fr E U Fr £ 2 Fr(EU FYyimplies the additivity of 7/. For ev-
ery open set G Y the set R of all =0 such that f='({¥:o(y, Y —G) = r))¢
7 is denumerable (it follows from C.C.C.), so there exists a sequence of
positive numbers r,¢R, €N convergent to 0. Put V, = {v:o(y, Y =) >r,}.
The set V, is open and f~'(Fr V) f~'({¥:o(v, ¥ —G) = r,}) €7 for every

neN. Then Ve for every n, GG = (| V,

" S0 74 18 a basis of V.

a=1
A class <@ of Borel subsets of V is called a gencralized hasis of YV if the
smallest field @7, containing (77 is a basis of V. Consequently

(v) Every basis of ¥ is a generalized basis of Y.

Tueorem 1. If f,—f wrt 7 and E is a Borcl subsel of ¥ such that
U Fr EYed then £ (E)Y—f~H(E) wrt S

Proor. Let 'Z,;{-r-,:](p;);\ be an arbitrary subseguence of :z;’;.l(i_;,:. From

the assumption it follows that there exists a subsequence {f,  } of ([ ]
convergent to f except on a set A¢-/. We have

X = [(f~HE) - A NS (Int EY|U[{(f~(E)— Anf~ (FrE)] U
(X =1 E U AN (Int (Y -ER] U
J[(X = EY AN UFrE)] UA.

If xef~"(E)— A and f(x)¢Int E then _fpmi(,\')—-f(.\:), it—~ =, so there cxists
N, such that fp  (X)€E for n= N, Therefore xej;n}n(E) for n=N, and
consequently ZJ;,'NN(EJ('Y)_‘ZI-I(E)(X)’ -, Similarly for

xe(X— (/- (EYJ AN (Int (Y —E)).
Since the remaining sets belong to 7, so the sequence lzjgx gyl converges

(U PR A-a.e. on X. From the arbitrariness of the subsequence :zj-;?:l(ﬁ)l

it follows that f 1 (E)—~f"1(E) wrt J.



0N THE CONVERGENCE WITH RESPLECT TO THE a-1DEAL 25

THEOREM 2. Let (@ be q denuincrable peneratized basis of Y. If fm1(V)—~
~f (VY wrt I for every V€U, then f,—~f wrt 2.

Proor. From proposition (i) it follows that the convergence f,7' (V)
—7~"(V) wrt 2 holds for every set V belonging to the smallest field @,
containing (7).

Suppose that the sequence {f,} is not convergent with respect to the
o-ideal 71 to the function f. Put g,(x) = o(f,(x), f(x)) for xe X. Obviously
g.(x)=0 for x€ X and the sequence {p,} does not converge to zero with re-
spect to the o-ideal . By lemma 4 in [2] there exist a subsequence {fn,}
of {f.}, a set Ay ¢5—71 and a natural number &, such that for every sub-

sequence {fpmn} of {fm,} we have limsup o(f,,. (¥), f(x))a—kl— J-a.e. on A,

o

Let ¢ be a positive number such that A =& By the definition of gener-

1}
alized basis and proposition (ii) there exists a sequence {V,} of sets belonging
to @@, such that ¥V = ) V, and &(V,)<e. Since A, = Cl [A,N (V)]

ne=| n=1
there exists n, such that A,Nf~' (Vo )44 Put V =V, E=A,Nf(V)
and let {fp,. } be an arbitrary subsequence of {f }. Then lim sup o(f5,__ (x),

1 P

f(x)):_~’f =& ~J-ae. on E. For infinitely many s fp (x)4V, hence
Yo n

Jim inf Zist (X)) =0 ae on £ and g7 v)(x) =1 for x¢£. From the

arbitrariness of {fp | }it follows that the sequence {fn, (V)} does not contain
a subsequence convergeat to f~'(V) ~-a.e. on X — a contradiction.

THEoREM 3. If Y is u separable melric space, and [,, f: X ~Y are
S-measnrable functions, then the following conditione are equivalent:
I f, =fwrt o
V. There exists u denumerable generalized basis <@ of Y such that
SV~ wet 7 for avery V€.
111, Therr exists a demunerable busis 0 of 'Y such that {71 (V)Y—f~1(V)
wit 7 for every Ve,
W, £79(B)+f~Y(B)Y wrt o for every Berel set Bc YV such that
J ' (FrB)eJ. ‘
The proof of the above theorem is essentialy the same as the proof of
thearem 3in [1], p. 129, so we shall omit it.
Denote by X the class of pairs of sets (E, FYc¢ S xS fulfiliiug the fol-
fowing conditions:
() If E¢.7 or Fe, then (E, F)edi;
(2) If (£, Fyeddi, then (X —E, X —F)et;
(3) M ENFedd, then Ec or Fed for every (£, F)¢<t;
(4) For every sequence {(E,, F,)} if (E,, F,)éH for each neN, E,~E
wrt & and F,—F wrt &, then (£, Fye/XN.
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If (E, F)e/, then we shall say that the sets £ and F are independent.
Two classes & and 7 contained in & are called independent, if any two sets
Eel and FelF are independent. Let B denote the family of the Borei
subsets of Y. Two S-measurable functions f and g are called independent if
the classes B, = {f~1(B): B¢B} and B, = {g~*(B): B¢B} are independent.

If {X, &) is a measurable space and ¢S is a proper g-ideal of subsets
of X, then there always exists a family Jc s x4 fulf[llmg the conditions
()—(4). Indeed, put W = (ZXE) (S XAU(EF XIS X L) where 2 =
={A¢d: X — AcJ}. This is, in fact, the smallest famlly having all required
properties,

Observe that in the case of probability space the family of all pairs
of independent sets fulfills (})—(4).

Let € and ¥ be two subclasses of 5.

DeriNITION. We shall say that & is “-dense ot X if and only if for
every set E¢ X there exists a sequence of sets {E,}, E, €@ for ngN, con-
vergent with respect fo the o-ideal 2 to £

Lemma 1. Let the family of all $-measurable functions endowed with
the convergence with respect to the s-ideal 51 be a topological space (see
(2, [3]). I f: X=V is an S-measurable function and @ is an additive
basis of ¥, then the class @, = {f~*(V): V €@} is “I-dense on B,.

Proor. It is well-know that & = U (ﬁ,‘, where &, is a class of open sets
inY, ¢4,= (U ., ),, if o is an even U]’dllld] unumber, ¢, = ( ! é)ﬁ,),, if o

r=x

is an odd ordinal number and 2 stands for the smatlest non-denumerable
ordinal number. It suffices to prove that the class (@, is J-dense on (€.),
for oo 2. We shall proceed by transfinite induction. M (fe&f,, then G =

= |:| V; where V<@ for every i¢N. Hence

G = U f ).
Put !
S GER Y7]

i=1

We have  Vie0, so A, ¢, A,cA,., for neN and A, = f~1{(G).
=1

Therefore Za, (X) =2 agqy (X 11> for every xeX. Consequently A,

= fHG) wrt " Suppose that the class @, is cl-dense on (&), for every

y<e, where = is a countable ordinal. We shall prove that @, is ~J-dense on

(&.);. If « is an even ordinal nuimber, then &, is an a-addltwe class, i.e.

it consists of the denumerable unions of increasing sets of classes less than

x. If Ge €y, then G = Cj G, where G, G,,, G, €4, v,~aTorevery ncN.

n—1
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We have f~'(Gy= | f~"(G,), so fTHG)~f"HG) wrt I and f~1(G, )¢
n=1
€(€iy,),. From the assumption it follows that for every n there exists a
sequence of sets {4, .} in @, convergent with respect to the o-ideal 2 to
f~YG)). Since the family of 3-measurable functions with convergence with
respect to the g-ideal =7 is a topologicai space, so there exists a sequence of
sets {Any,m, ), KEN in @y convergent with respect to the o-ideal & to f~1(G).
Cons{,quently the class @, is J-dense on ((Z.),. If « is an odd ordinal num-

ber, then &, is an x-multiplicative class, i.e. for G¢ &, we have G = m G

n?

n=1
vheu G,>G, .\, G.€4,,, y,<« for every neN. Obviously f~(G)=

PI_

= r‘] F7HGL), 50 f7HG )~ HG) wrt o and f~1(G, )€€, ). In the same
n=1

way as earlier from the assumption it follows that there exists a sequence of

sets in (0, convergent with respect to the g-ideal 7 to f- (7). Consequently

the class (@, is Z-dense on (&.),-

Observe that in Lenima  we cannot omit the assumption that the family
of S-measurable funtions with the convergence with respect to the o-ideal ~
is a topological space. Indeed, put X = Y = R, f(x) = x for x¢€ X. Denote by
& the e-field of Borel sets and by A the g-ideal of sets of measure zero and
of the first category. It is easy to see from the third example in [2] that the
family of d-measurable functions in that case is not a topological space.
Let @ denote the family of the finite unions of open intervals and let Fc
[0, t] be a set of type F, of the first cafegory which has a positive measure
on every open interval (u, [0, 1]. We shall prove that there is no sc-
quence {V,}o @7, convergent to F with respect fo the o-ideal 72, Indeed, sup-
pose that V, - F, 11— = in mecasure and let {V,, } be an arbitrary subsequence
of {V,}. Put ¥V = limsup Vu,. Then V' is a set of type G, dense in [0, 1],

fl
because V' has a positive measure on every open interval (¢, [0, 1}
Hence V is the set of the second category. The set V o F is of the second
category, consequently the sequence {va } is not convergent to y,. except
i

on i set of the first category. From the arbitrariness of the subsequence
{Vi,} it follows that the sequence {V,} is not convergent with respect to the
o-ideal of the sets of measure zere and of the first category to the set £
[u the sequel we shall suppose that the family of $-measurable functions
with the convergence with respect to the e-ideal 7/ is a topological space.
LEmma 2. Let 7} be an additive basis of ¥. Two functions f and g
are independent if and only if the classes @, and @@, are independent.

Proor. The necessity is obvious. To prove the sufficiency it is enough
to observe that if (¥, and 0}, are independent then, by Lenuna 1 and con-
dition (4), the classes 73, and 13 are also independent. Consequently the
functions f and ¢ are mdepend{.nt

THEOREM 4. If the funciions f, and g, are independent for every neN,
Lrfwet Tand g, g wet O then fand g are independent.
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Proor. Similarly as in (iv) it is easy to prove that the class @ of all
open sets G ¥V such that f~'(Fr G)<-7 and g~ (Fr ()¢ -~/ is an additive hasis
of Y. In view of Thegrem 1 we have [ (G)) ~f ' (G,) wrt oL and g, {G,)—~

- g~ Y,y wrt A for all Gy, G,¢@. The functions f, and g, are independent
for every n£N, so by condition (4) and Lemma 2 £ and g are independent.

LeEmma 3. If ¥V is a separable metric space, then f is independent with
respect to itself if and only if fis constant F-a.c. {i.e. if there exists y,€ ¥
such that {x: f(x)=v}e7).

Proor. Suppose that f is constant -Z-a.e. Then for every set Ac8, we
have A¢Z or X — Ac?J. Hence for every A, A,€B, the pair (A,, A}l
Consequently fis independent with respect to itself,

Suppose 1now that fis independent with respect to itself and let < be a

denumerable basis of ¥. Put 7@, Ved: s(Vy= —1—} for every neN. Ob-
1

viously for every n the class /0, is also a denumerable basis of V. Therefore
for every n there exists a set V,€@, such that f~'(V }q¢-/. We have
FYYINSHY =V, =0c2, so in virtue of (3) f~1{(Y—-V,)€é-1. Observe
that

f—'[ﬁ V;]e:f-
n=1

hecause

"‘[5 Vn] = u Yy —v)er.
n-1

|

Hence |:1 V.= 0. Since &(V,)-=-— then there exists y,€ Y such that
=1 1

NV, ={) and {x:fixy=y,e-7. Consequently f is constant J-a.e.
e

From Theorem 4 and Lemma 3 we obtain

TueoreM 3. If Y is a separable metric space, f,—f wrt 7 and for every

K there exist n=m= K such that f,, and f,, are independent, then [ is constant
-a.e.
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REMARKABLE DECOMPOSITIONS
OF L*-RANDOM VARIABLES
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1. Introduction. In this note we give some remarkable Davis-type {1]
decompositions for the random variables befonging to L*-spaces. These
decompositions will be given under various conditions imiposed on the power
of the Young-function @ and on the power ¢ of its conjugate Young-function
Y. The methods of these decompositions are interesting in themselves.
At the same time they lead to some usefui applications.

2. Basic notions and definitions. We refer to our work [2] and [3] and
we use the notions of them. We work on a fixed prohability space (2, &, P).
Consider the random variable X ¢L! and an increasing sequence of o-fietds
{ Fat} 1>0. We work with the regular martingale

X,=E(X|F£), n=0,

where we suppose that X, =0 a.e.

We also consider the pair (@, ¥) of conjugate Young-functions.

2.1. DermixiTioN. We say that a random variable X is L*-predictable
if there is a sequence {2,} such that the conditions

)y | X, |=2,_; a.ce., n=F,
by Jy=dj=ly=...=2,=<...,
¢) 4, is 7F,-measurable,
dy lim i, =i.€L%
e g oo

hoid.

We define ¢, as the class of L*-predictable functions X and we put

Xl = i0f el

1y

where the “inf” is taken over all the sequences {4} satisfying the preceding
conditions. The sequence {4,} will be called an L*-predicting sequence of X.

14 ANNALES — Sectio Mathematica — Tomus XXV,
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2.2. DerviTion. Consider the set of random variables y defined as
follows:

AP = {yipel”, E(X—Xo |l F)=E@h T ae. wa=1).
We say that X ¢ X, if A% is not empty and we put
IXllx, = i0f fyl.
AVl
Py
2.3. DErixiTion. Consider the set of random variables p defined as
follows:
O ={yiyel”, E(GX-XJ\T)=EQ@WF,) ae vn=0}.
We say that X¢ X} if I'(" is not empty and we set

Xl = f Wl
- f Rl
: X

[ ]

1. REmars. It is easily seen that

—

Nl |-z, and |||l . are morms on the spaces @Pa, Xa, and
o
X respectively.
2 XeXuitf E(X, =X, _ W FIy=E&|FYwe for all n=k>=1 and all
yE [15?1_
3. Xy ¥z, moreover we have
Xl =2 1 XM %, -

3. The Davis-type decompositions of the L®-random variables. These
decompositions will be given under various conditions imposed on the power
p of the Young-function @ and on the power g of its conjugate Young-func-
tion ¥,

3.1. THEOREM. Let X€L™ und suppose that both @ and ifs conjugale ¥
have finite power p and g, respectively. Then X can be written in the form

X=Y+Z

where YL and E(YVF,). n=0 is a rewedar martingate for which
E(Y|Fo)y=0ae, und

INEY I F)-EYIF - Nel®.
i=1
white
2P .
Moreover, we have

Hi=1

I3 Y= Vil = (+4p) giXTe
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and
[Z]l0y=(13+4p) q | X]}s -

Proor. Let X¥ = max |X,] and let X* = sup |X,|. By using the

l=k=n

maximal inequality of Doob (cf. [6]. Lemma 1. )we have

X le =g 1 X lle =g 1 X]ls ,
so, we get
[X*[le =g 1 Xl .

Consequently, X*¢ L™ and so there exists a random variable  belong-
ing to L such that the inequality

E(X =X, allF)=EQIF,) =7,
holds a.e. and for all n=1. For example, we can choose y = 2X*. Let

yE=0, »¥= max y, and y*= Eu;lj Vi -

l=k=n

Let us define ¥, =0 and for n=1 let
n = Z di = Z {d; 1 (??22??—1)_5(“'; I (v ::2??:—1”‘?5"1)} ,
i=1 i=1
further, put Z, =0 and, again, for n=1 fet

Z, =Y df = z{d ToF <278 )= E@ 1 (F <272 ) Fi)}

i=1 i—

It is easily seen that X, = ¥, + Z,, n=0, further that (V,, 77,) and (Z,,F,.)

are martingales. Here {d} {d} and {a"’} denote the martmgale difference

sequences corresponding to (X, 7F,), (V,, (F,) and (Z,, (F,), respectively.
On the event {yF=2yF_) the inequality

o =207 -y
trivially holds. Note that

[dil = EQX: = XLl F)=E@ifd=vE.
Consequently,
il = Y= Yiy| = ld: T (vF =292 )~ E{d I (yF =297 DV F i )| =
<|dp I (pF=29F N+ E(ld ] (vF =29 NI F )=
=2 (YE—pE )+ 2E (pF— vE ) Fima) -

Therefore, for arbitrary n= 1 we have
n n
2 Y= Yiql=2y7+2 Z E(yt—vialFi-n)
i=1 i=l1

14+
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and so
2 Y=Y =2y +2 3 E(pF -y Fiey)-
=1 =

i=1
It follows that
S Y, — Yoo eLe .
i=1
To see this, by the maximal inequality of Doob and by the Jeusen
inequality we have

y™*|le = ¢ sup N alleo = G 1yl -

So, y*€L®. On the other hand, by the convexity lenuna (cf. NEVEU [7], p.
219.) we can also prove that

REGE-yE N Fiel.
i—1

I fact, we have
( ( > E(y?—yﬁ.,tcf,--.l))) ( ( > (-7 ))
Foll 7,3 A, — Vel V=t -
2™ e iy * e
'u$
= E[CD [__‘_J_ ]<] -
l7* e

So this implies that

' Z E@f—vElFi 1)
5

= plly¥ls -

! K

Here we have supposed that ||*}.>0. This supposition can be made with-

out any loss of generality since otherwise the inequality would be trivial.
Hence

AL ANIILS
i—1

Therefore, we deduce that the martingale (V,, .} is regular. Denoting
by V its a.e. limit, it is easily seen that

|y|i"2 V.=V, ,leLl”
fpmy
and

Y;! =E (yil:—ftu)! n=0.
Now we turn to the martingale (Z,,, 'F,). Since
Z,=X,-Y,
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we deduce that it is also a regular martingale and with some Z¢L* we have

Z,=E(ZVF,), n=0.
We show now that

ZePa .
Fromt the definition of Z,, it follows that
ldy | = |Zo—Zyal = 1dp| T (73 <295 D+ E(|d, [ (pF<2y3 ) Fum) =

=ym L =2 D H EE L (i < 205 DI F ) =
H2}’n l+".* n—-1 = 4?:1—1 M
Consequently, the relation

. . Xooy =Yoo+ 2,
implies that

[Z.] = |Zn—l|+|Zn_Zn—1|£JXn—li+]yn-1[+4y:—15
n—1
=4y  +XF + D Y=Yl
=1

Let
o= AL XEL S V-Vl n=1,
i==1

and put i, = 0 ae. It is easily secn that 2, is {F, -measurable and that
2 €L, Alsa we have A, t 2. asi— + o, where

*o S |V— Yoo+ X*eLe.

=1

Finally, from the above estimations it follows that

Zly 1|‘ E '$+2ZE(?1_” 1|fi 1)||

i=1
B SUE@E—E N FoOl =204 +2p Iy*le = (24 2p) ¥l
i1 Cap

and that _ )
NZD 5, = 4 ¥l + ;! Z ¥ VHH[ FIX*o =

.
=4|y* e +C+2p) [y* o+ | X¥ e = (64+20) [*llo + [ X* |l -

Especially, if y,, = 2X¥*, we have

i|z Y= Vi
Ji=1 e

=(4+4p)1X¥ 0 == (4 +4p} ¢ |1 Xl
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and
1Zllp =13+ 4p) X ¥ e = (13+4p) g § Xl .

This proves the assertion.
We can formutate the preceding assertion under other conditions, too.
Namely, we have

3.2. TuEOREM. Lot XCL™® where @ is a Young-function. We suppose that
@ has finite power p and also that

su = -z 4 oo
ey (x) f

holds, where ¢ (1) denofes the right-hand side derivative of @. Then X can be
writfen in the form
X=VY+Z

where Yelo and E(Y|'F,), n=0 is a regular marlingale for which
E(Y| Fy) =0 ae. and
SUE(YIF)—E(YF el
He .
while Z¢a.
Moreover, we have
H - — — it ,
|2 ECIF)=EVF I =3+ 4p) pelXilo
=1 e

il
KZll g = (13+4p) pci Xl -

Proor. We can follow the same method of proof as in the preceding
theorem. Since p, the power of @, and

rﬁ(!)
p— s f

are finite it follows that X*¢L® (cf. [4] Theorem ).) Taking for example
7 =2X* we can in a completely analogous manner construct the martin-
"alcs (Y., ¢F,) and (Z,, 'F,) as in the proof of preceding assertion.

Under the present conditions we deduce that

= sup E(y|F,)eL”
n=0
and since p is finite the convexity lemma can also be applied to prove that

2 E(vF -yl |iFi- el

=1
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The other steps of the proof are the same as in the preceding theorem. This
proves the assertion.

A third condition under which the same Davis-type decomposition is
given can be formulated in the following:

3.3. THEOREM. Lef X € L™ and supposc that the confugaie Young-function
Y has finite power 4. Also, suppose that

x
1
sup  — f Ma’t =
n=0 ip(x) ; !

is finite, where y (x) denotes tie right-hand side derivative of W(x). Then X can
he writtent in the form
X=VY+2Z

where YelL® and E(V|F), n=0 is a regular marfingale for which
E(Y|Fa)=0 ac. and

S E(YIF) - E(YVF_)leL?,
i=1
white Z¢Pa.
Moreover, we have

> EQVF) - E(VIT) = (41X
=1 HES

il
1Z]lp = (13 + 4"} g | Xl .

ProoF. We can follow the main lines of the proof of the preceding two
theorems. Since ¢ is finite by the Doob inequality we deduce that X*¢L®.
Thus, taking for example 3 == 2X*, we can construct the martingales (¥,
)y and (Z,,+ F,) as in Theorem 3.1. The finiteness of ¢ also implies that

oF = sup E(Y|F el
ne

Further, the finiteness of ¢ together with the condition that

LY
sup -- ! f —’F(—!)di =" = 4o
x>0 () !
1]

imply that for the Young-function @ and for the random variable

Z E(yf—viabFi-1)

f‘:I

the convexity inequality (cf. [5], Theorem 3.), can be applied to show that

Z E@F—yEdFio)
iz1

also belongs to L™
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The other steps of the proof are the same as in the preceding two theo-
rems. This proves the assertion.

4. Two inequalities and an application of them {fo the preceding decom-
positions. Now we shall deduce two interesting principies and we use them
to the decompositions of the preceding section.

4.1, Tugorem. Let (X, +F,), n=0, be a martingale and suppose that
X, =10 ae. Lel us denofe by {d}} the difference sequence of this martingale
and suppose that for all i=1 we have a.e.

|dif=9,,

where the randont variables 6, are F ~measurable and such that

S sl
i=1

If Y€ Xy then the expectation E{(X | Y,) exists and is finite. Further, we have

E(X,Y, zﬁmm@:i
| =

by Wl
where {di} denotes the difference sequence corresponding to the martingale
(Yo, F.). Morcover

lim E(X,Y,)

H—=F =

exists and is finife. We have

lim E(X,Y,)| =2 i b Y lx, -
| |

Mor Lo i

MI

ProoF. Since Y& Xy, then by Remark 2.1.2. we deduce that with any
yeAy”

dil = EQQY. =Yl F)<E@LF) i=1.
I't follows that
E(id;d;y=E (3, E@| 7)) =21Mla |E (2| F v =2 (18l [[7llae = + = .

Here we have used the generalized Hélder inequality. Consequently,
E(X,VY)) is finite and

EX V) = 3 EW@d) =3 E@EQIT)) =
i=1

i—1

;Euémp] : &

Further, by the generalized Hilder inequality with arbitrary indices m=u
we have
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E(X, Y)-E(X, V) =1 3 E(dd)= 2 EGE@TF) =
i=mt1 f=m+1
S NIOPEY (D) 6;]?]*:2‘;! 58] vl
f=m+1 f=m+1 ii=mzl [l

We deduce that {E(X, V,)} forms a Cauchy sequence. Consequently,
lim E(X,Y,)

M oo

exists. Finally, we trivially have

= lim iE([d,.a;ns_ tim _zn]E(é,-E(yll?f‘r—))=

e 7

L lim E(X, Y,

vt e

This proves the asserfion.

We recail from [3] the following notion. To each randem variable
X €Dy we can order a random variable X where C=0 is arbitrary number.
X converges a.e. and in Dy to X as C—~ + . We have

[Xcl=(242log2)C.
Now, we can prove the following:

4.2. THEOREM. Lel (@, W) be a pair of conjugate Young-functions and
suppose that X¢Py and Y& Ky, Then the expectation

E(X, V)

exists and is finite for arbitrary fixed n=1, and we have

j Il

i=1

E(X,Ya) = > E(didy),
where {d;} and {d}} denote the difference sequences corresponding fo the martin-
gales (X, F,) aid (V,, F,.), erspectively. We also have that
E(X, Vo)l = \Clim E(Xng Yo} =(16+1610g 2) [ X lin,, [Yall . -
[ s i

Proor. [X,| is bounded by 7,_, =7.cL”. Consequently,
| = 1X,— X | =22, €17
Further, if ¥ € Xy then with any y€4$9, we have from Remark 2.1.2. that
@il = |Vi— Yial = E(QY, = Y[l F)=E@IF).

Also, together with p¢L¥ it is also true that E(y|(F,)eL¥ for arbitrary
i =1. Consequently, d/¢ L¥ and by the generalized Holder inequality we have

E(|d; dj))=2E (4my E(IVF D) = dMAicalls |E (91 F Mo =< + = -
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This means tiat

IE(X, Y= += and E{X,V,) = Z E(d;d}).

i=1
Now we prove that

E(X,Y) = I1m E(X,.C Y.).
where X, is the random variable defined above for arbitrary C=0. In {3]
we proved that for arbitrary C=0 we have the incquality
|X.I'I_X”Ci o Z d ¢ (’r 1) fn- 1() (/ —])
i=1

where

a2c

O=0:(4,_4) = l—[-ﬂ .= I] Al=
‘-1

The limit of O(4,-) 150 as C—~ + . 50, X
IX Xﬂci|y1"—'/n]1yl

ne A, +0 ae. and

Here the right-hand side is integrable since again by the generalized Holder
inequality
E G 1Y) = 202, alla [Vl -2 4 o

Consequently, by the Lebesgue dominated convergence theorem we have

l‘ (iX ch| l |) 0
as C -+ oo,
Finally, we prove that

[EAX, Vo) = (16+1610g 2) | X, li o, |Vl -

This follows from the following remacks: together with X the random vari-
able X, also belongs to s an(l trivially 11X, /lp,, == 1X| »,. Also, if Ye Xy

then tri\rially Y, Xy~ X, and hy Remark 2.1.3.
I¥oll ;=2 8¥ iy, = 2 VI

L -
Cousequently, by our gmuallz.ttlon of Herz inequality (cf. [3]) we get that
[EAX V)= (84 8log X[, IVl o = (164 1610g 21X [, 1Y il <, -

This proves the assertion.

The first assertion of the preceding section enables us to formulate the
following:

4.1. CororLary. Let (@, ¥) be a pair of conjugate Young-functions
and suppose that the power p of @ as well as the power g of ¥ are finite.
[f Xel™ and Ye Ky then for all n=1 the expectation
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E(X,Y,)
is finite. Namely, we have for ali n= 1

]E (Xrl yﬂ)l = C"' ”X”u’ Hy”xlp ke

where
Co = ¢ (8+8p+(16+ 161og 2) (13+4p)) .

Moreover, lim E(X,Y,) exists and

e+ oa

| lim E(X, V)

==

= Co | Xl | ¥l

Proor. Theorem 3.1. implies that
X=X+X",
where X’¢L® is such that the corresponding martingale
X, =EX|F,) n=0, X; =0 a.c.

satisfies the inequality

il o |
p iX?~XE--xllii| (4 +4p)X]ja < + .
”i:l o

Consequernttty, by Theorem 4.1. we have that E(X]Y,) is finite for all
H=] and

EXLY)=20@+4n) a1 Xl 1Yz, -
Also, we have that X”¢/Py and sa by the preceding theorem
E(X,Y)
is finite for arbitrary n=1 and

E(Xy Vo)=(16+161og 2) (13+4p)q [ Xjfe | V)x,, -

This proves the first part of the corollary. To prove the second one we
have only to show the validity of the Cauchy property for the sequence
E(X,V,). By Theorem 4.1. and by Theorem 4.2. we have that

E(X,¥,) = > E(@,d))

where {d;} and {d;} are the difference sequence of (X, ) and (V,, “#,.)
respectively, From this for n=m we deduce that

E(X, V) —E(X, V)= 3 E@dd)=E((X,—X,)Y,).

f=m+1
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Consequently, by the preceding inequality
1L (Xn Vn) — I (Xm Vm)] =Ca HX_rg - Xm”'f‘ IEY,,_“LF :
Since & has finite power and
Sl,lp HXan; e ”X”qu ,
nz=0
further X, — X a.c. we get that the right-hand side tends to 0 as i, m - 4 <=,
since 1V |lx,, = Vllx, (cf. [8].). This proves the assertion.

[n the same mamner hy using Theorem 3.4, and Theorem 3.3. we prove
the following two corollaries:

4.2. CoroLLanry. Let (@, ¥) he a pair of conjugate Young-functiens.
We suppose that @ has finite power p and that

f:sup—l— 7 () dt-= + oo
x=-0 f_r(X) {
L]

holds, where ¢ denotes the right-hand side dervivative of . If Xe L% and
Ve Xy then for arbitrary 1=1 the expectation
E(X,Y)
is finite. Further, for all n=1 we have
HE(X V) = Co iXiw 1Y Ly,
where (], is the constant
Cr = pe{8+8p+(16+ 16Tog 2) (134 4p)).

Moreover, lim E(X, V) exists, is finite and

[

im E (X, ¥,) = Co X1 1Y e,

|
!nh..{.«.,

4.3. CoroLLary. Let (@, ¥) be a pair of conjugate Young-functions
and suppose that ¥ has finite power ¢. Also, suppose that

1 xl'f
c’::sup—T f ;(}(”
o) J
0

is finite, where y(x) denofes the right-hand side derivative of W. If X¢L?
and Y¢ Xy then for all n=1 the expectation

E(X, Y



REMARKABLE DECOMPOSITIONS OF L™-RANDOM VARIABLES 291

is finite. Further for all #=1 we have
E(X,Y,)| =cy X

Y ”xip ’

i
where ¢ is the constant
¢ = q(8+8g¢ +(16+ 16 log 2) (13 +4qc”)} .

The inequalitites of these corollaries are in — between the generalized
Halder and the Fefferman— Garsia inequalities.
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In this paper we are dealing mainly with a speciat kind of casino,
namely with the se called red-and-hlack casine. In this gamble the gambler
cammot stake more than he possesses. Denote his initial amount of money
by x (where O=x-< 1). If he wins — this occurs with probability p —, then
he gets hack his stake and as much more again, he loses his stake with proba-
bility ¢ = 1 —p. His goal is to obtain at least [ unit of money. Dusixs and

Savage [1] (Theorem 5.52.) characterize — in the case if p-= l — those

strategies for which the probability of attaining the goal 1 is mdxmml A
useful common property of these strategies is that if the gambler uses some
of them then at the end he has just 1 or O unil of money. The “hold” strategy
belongs to this family. This is the following: the gambler bets his enfire

. L ] A
money if this is smaller than ' otherwise he befs a smalter amount of

money which is just enough to reach his goal (if he wins). We shall prove

that in a large class of strategies the ““bold” one minimizes the average

number of ganes until the gambler reaches his goal or becowes ruined.
We shall use the following notations:

X, denotes the outcome of the i-th game. 1t s equal to +11if the gam-
bler wins, and its value is — 1 if he loses, i=1,2, .... They are inde-
pendent random variables. \F, =a(X,, .... X)) i=1,2, ... F,={0, 2
The strategy of the gambiler means to cho(m random variables (Sp)r=y,2, ..
such that 0=8 -- 1 — the gambler’s decision before the n-th game depends
only on the outcomes of the first (rr-- 1) games and his initial amount of
nioney. So, we require that S, would be 7, _, measurable n =1, 2,

Let ¥, be the total amount of money of the gambler after the - th game
(V= 1) They are defined by the formula

y’l’l:}fn—l_*_‘/;l'lbﬂxﬂ - I!‘-)'""'
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Finally, let
p=inf(n:Y, =0 or Y,=1)

where, as usual, the inf of the empty set is equal to + o,
First we characterize the average number of games using a strategy
which minimizes this. We shall refer to such strategies as “optimal” ones.

ProrosiTiox . Suppose that using a given strategy the expected num-
ber of games - denoted by M(x) — is a bounded function of x and satisfies
the following inequality

(B M) =14+pME+y)+gM(x—v), O=x—y=x=1,

where M{0)y =0, M2} =0 if z=1.
In this case there isn't any other strategy for which the average nun-
her of games is less than M (x) (at any x¢(0, 1))

Proor. First we prove that the sequence ot the following randont vari-
ables forms a submartingale for any strategy: (M (V) + a1z,
Observe that the inequality (1) trivially holds if x= 1. Let A be an atom
in the o-field . 7,. Then the random variables Y, and S, | are constants, the
random variable X, ., is +1 -- with conditional probability p — or —1
- with conditional probability ¢ — on this event. Hence we can argue as
follows (using the independence of X,., and y,):

JIMY, . y+n+1]dP = [ MY, +Y,S, X, )+u+]]dP ~
J _

A

— I[] +pMI(Y, + Y, 8, )t gM(Y,—- Y, S,-)+n|dP=

= [ My, +n]dP.

Thus
E(M(Y,)+m)=M(¥,) = M(x)
for every nu.
Since M is bounded and » A 1 increases as 11— oo, we get

EMY)+E@=M(x).

If £({v) = == then obviously E(»)=M (x).

If E(r)== oo then P(V, =0 0r Yi=1) = 1, so P(M(Y;} = 0) = 1, there-
fore £ (p)= M (x).

CoroLLARrY. If we restrict ourselves to the strategtes for which (Y, =0
or Y,=1)= |, then it is enough to show inequality (1) in the case O=
=X—VY=X=X+4+y=1.

Now we show that the well-known strategy “double or quits” assures
the minimal expectation of the number of games.

Prorosition 2. Suppose that the gambler uses the following strategy:
in every game he stakes all of his money. This strategy is “optimal”.
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for some n. Then the number of

ProorF. Suppose that 2L5x-::

games is at Jeast k with probability p* if 0=<k<un, if k=n then the proba-
bility in question is 0. Denoting the expected number of games using the
“double or quits” strategy by M,(x) we have got

1

2n—1

n—1 i
M) = > p* if X
“=0 2

Obviously M {(x)=0 if x=0 or x=1 and
] 1
A4d(x)ﬁ? i == .
i-p ¢

So it is enough to prove that M, satisfies the inequality (1).

3 x‘;% then M, (x) =1 so (1) holds for every O0=y=x.
1

oo o=y <
2nT1 2n

=M, (x). Thus (1) holds.
Now let us restrict ourselves to such strategies for which £ (¥, =0 or
Y. = 1} = 1. The following theorem holds.

for some 1, then x+y4%. So pM(x+y)=

THEOREM. There exists a unique “optimal” sirategy in this family,
namely the “bold” one.

Proor. Denote the expected number of games using the “bold” strategy
by M,(x). First we give an explicit expression of the function M,(x). (For
the sake of simplicity we introduce a function f in the following way: f(0) =

=p, f()=1q)

If x is hinary rational, and

X = i—;: (x, = 1)
then I=I
(2) M) = 1+ 1165
i=1 j=1

If x is binary irrafional and

. x
T 2.:1 Pl
then
3) My =143 J71(5).
i1 =t

From these expressions it follows that the function M, is continuous af every
binary irrational number, and M, is bounded by [I —max (p, g)]7%. So for

15 ANNALES — Sectio Mathematica - Tomus XXV,
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the optimality of “bold” strategy it is enough to show the inequality (1)
in the case 0=x—y=x=x+v=1
By the formula of total expectations

@ My(x) = ’

l+gM,(2x—1) if —=x=I

Ir] LM (2x)  if Oex= —,]'-

and M, (0) = M, (1) =0.

Denote M(x, ¥) = 1+ pM, (x+V)+¢M, (x—y)— M, (xX).

If at least one of the x, v, x+v¥, x—v, 2x, ‘2.\’-—--{)— is 0 or 1 then easy
computation shows that M{x, 1)=0. S0 wc¢ can suppose that O0-=x—v,
X+v-=1, x;é—i-, x-.v‘-—'l)—-, X —i—. First we show the validity of (1} for binary
rationais x and p, using induction on the binary order of x and v. This and
the continuity of M, at binary irrationals imiplies that (1} holds for every
X, ¥ satisfying the constraints 0=x—p=x=x+y=1.

. The validity of the forthcoming equalities can be justifield using the
equality (4).

Case 1. x +y-—<—i—. In this case M{x, ¥) = ¢+ pM(2x, 2y). The induction
hypothesis justifies that M(x, y)=0.

Case 2. x—y= e then M(x, ¥} = p+gM(2x—1, 2¥). As in the case 1.
from this follows that M(x, ¥)=0.

Case 3. x-:%(..\ﬂry. Consider two subcases.

. y 1
(i) p=g :M(x, V= 1+p+g-—M, (X)) = [ —pM, (2)=1—p T =0,
(iiy p=q: since x=v, x is necessarily greater than l s0

!
=0y — --l—-:=—U .
9 ‘)

M{x, y) = g+ qM [Qx— rl)-, 2y - I

| | 1.

"

The induction hypothesis justities that M(x, v)=1{.

. ] . Co .
Case 4. x—v= 5 I'lie proof is similar to that of the preceding one.

From these it immediately follows that the “bold  strategy is optimal.
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[t remains to prove that it is unique. We have known already that if
the gambler uses an arbitrary strategy then M, (Y. n)+v A1 is a sub-
martingale, so¢ E (r)=M,(x). The equality holds if and only if this sub-
martingale is a martingale. This means that P(M(V,, S,., ¥,)=0) =1 for
every #. But M{x, ¥) =0 if and only if x = v or x4 v = L. This yields the
“hold” strategy. ||

It is interesting to note that this strategy assures the maximal proba-
bility of attaining the gambler’s goal, the | unit of money, in the case p<q.

Az concerns the guestion what strategy assures the maximal average
number of games it is clear that for the strategy S, = 0 for every n we have
E (v} = <. Moreover, if the gambler can stake arbitrary small amount of
money thert we cannot expect “reasonable” answer to this question. Let us
modify a little the rule of gamble. Suppose that x, the target sum &k and the
bets in cvery game are natural numbers (particularly they are =1). I we
restrict ourselves to such strategies for which P(Y. =0or Y, =k)=1 then
the following strategy assures the maximal average number of games: in
every game the bets are just I unit of money. Denote this average by M (x).
We know that

()
X I p
[ T S S ol if ) a4
M@ =1 prg p—g | (q) Py
P
X{k—x) it p=yg.

O<x<k).
Since obviously an assertion similar to Proposition i. holds in this case,
too, it is enough to prove that
(B) 14+pM (x+V4+ M (x—p)— M ()=} O<=x—v<x=x4y=Fk.
An easy computation shows that this holds.

Remark. If we omit the restriction P(¥, =0 or Y. =4k)=1 then
the above strategy ceases to assure the maximal average number of games,
since inequality (5) doesn’t hold without the constraint x4+y=<4& On the

. 1 . .
other hand in the case p=¢ = el the required strategy can be determined

easily. This is the foliowing: the gambler stakes in every game [ unit of

money except if he has just (& — 1) units of money when he stakes more than

1 unit of money, say L. [is approximately —-& for large k. The exact value
]

of { can be determined by solving an cquation of order two.
We hope to return to these questions in a forthcoming paper.
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1. Introduction, There are two important classes of topological spaces
whose definition, in its original form, is an ¢Xternal one, it uses the properties
nf the space refative to other spaces that contain it. Hence a space X is
said to be H-elosed if it is a Hausdorff space and it is closed in every Hausdorft
space ¥V that contains X as a subspace; and X is said to be Cech-complete
if it is a Tychonoff space and is a G, in every Hausdorff space that contains
it as a dense suhspace.

Besides these external definitions, there exist internal characterizations
for both classes of spaces. That one for H-closed spaces was known for P. S,
ALExaxprorr and P. S. UrysounN who first defined H-closed spaces and
says that X is H-closed iff it is a Hausdorff space and is almest compac;
the last property means that, in each open cover of X, there is a finite
number of members the union of which is dense in X.

The internal characterization of Cech-compiete spaces was discovered
much later ([1], [2])- It says that a Tychonoff space X is Cech-complete iff
there exists in X a sequence {€,) of open covers such that if, in a centred
system 9 of closed sets, there is for every n¢N a set A,¢% contained in a
member C, €€, then N <P (a system is said to be centred iff it has the fi-
nite intersection property).

it is easy to observe that, in contrast to the original external definitions
in which it is essential to assume that X is Hausdorff or Tychonoff, respec-
tively, the internal characterizations postulate properties that remain mean-
ingful for arbitrary topological spaces. Hence the question arises quite natu-
rally whether the properties contained in the internal characterizations
are equivalent or not to suitable external properties without any a priori
restriction concerning the class of topological spaces in guestion.

A positive answer to this question is known for the case of H-closed

spaces ([3], [4], [5], [6]). The purpose of the present paper is to show that
the situation is similar for the case of Cech-complete spaces, the methods
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applicd in connection with H-closed spaces and the resulis obtained with the
help of them being also useful in dealing with the problem of Cech-complete
spaces.

2, Results on generalized H-closed spaces. Let YV be a topelogical space,
X asubspace of V. We say ([7], [3], [4]) that Y is relatively T, with respect to
Xitf x¢ ¥V, ve ¥V — X, xzyimplies that x and y have disjoint neighbourhoods.
Y is said to be an exfension of X iff X is dense in Y. V is said ([4]} to be an
ordisrary extension of X il it is an extension and is relatively 7, with respect
to X.

A filier 5 in a topological space X is said to be epen iff it is generated hy a
filter base composed of open sets. A maximal open filter & is an open filter
such that, for every open filter 5, >%, we have §, = 3. A point x€X is a
cluster point of an arbitrary system % of subsets of X iff xe{A: Ac}.

Now the theorem on generalized fl-closed spaces is the following ([4],
Theorem (1.5); [5], Lemma 1.2; [6], p. 132):

(2.1y For an arbitrary tepelogical space X, the following statements are

quivaleni:

(a) X is almost compacl,

(0 In X everv open filler has a cluster poind,

(¢c)y fn X every maximal open filter is convergent,

(Y If X is u subspace of o space Y relatively T, with respect to X, then X
is closed in Y.

One of the main purposes of [4] was to generalize, for arbitrary spaces,
some cnnstructions, known for Hausdorff spaces, of almost compact exten-
sions. For our present purposes, one is needed of them, the Fomin exfension
of X. This is obtained in the following way.

[ an arbitrary topoelogical space X, consider all non-convergent maxi-
mal open filters and define a set ¥ X such that there exists a one-to-one
map & from ¥ - X onto the set of these filters. Thus 5(p) is, for pe¥ — X,
a non-convergent maximal open filter in X. For x€ X, define 8(x) to be the
neighbourhood filter of x. For an open set G X, set

s{G) = {ye Y:Ges (1)},
and equip ¥ with the topology having

{5 (€5): G is open in X}
as a base. Then we have ([4], (2.13)):

(2.2) The space Y described above is called the Fomin extension of X. Y
is an ordinary, almost compact extension of X, T, if X is T,

From the definition of a maxima! open filter it is easy to deduce the
foilowing proposition that will be useful in the sequel ([4], (2.4)):

(2.3) If 8 is @ maximal open filter and G is an open sef such that GN S =V
or Scg, then Ges.
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An easy application of the Kuratowski-Zern lemma yields ({4], (2.5)):
(2.4) Every apen filler is contuined in a maximal open fifter.

3. Regularly embedded subsets. We shall nced the following concept:
DeFIxITIoN 3.1. A subset A of a topoelogical space X is said to be regu-

larly embedded in X if, whenever xé Ac@ and ¢ is open, there exists an
open set Vosuch that XeV VG,

ProrosiTiox 3.2, X is regudar iff every onc-clement subsef of X is regularly
embedded. ||

ProeosiTion 3.3. Everv open-closed subsel of X is regularly embedded. ||

ProposiTion 3.4. If A, is regidarly cmbedded in X for icl, then A =
= U A; is regularly embedded. |
i€l
Prorosimiox 3.5, Lef X be a subspace of Y, AcXc Y. If Als regularly
embedded in 'Y, then it is regutarty cmbedded in X 1oo.

Proor. Let ¢ he open (in Y)Y and AcG N X, x€ A. Then there exist an
open set Ff and a closed set F (always in V) such that x¢ Hc Fc @, hence

XEHNXcFNXcOGnNX,

and H N X is relatively open, F N X relatively closed in X. ||

The following property of the Fomin extension will be vseful:

THEOREM 3.6. Every space X is regularly embedded in ifs Fomin exten-
ston Y.

Proor. Let H beopenin ¥V, XcH< Y, xe X. There is a set G, open in
X, such that xes(Gyc H; we show s{(G)c H for the closure in ¥. By X< H
it suffices to check s((7)— X < f{. But this is a consequence of the equality

(3.6.1) S(G)— X = $(G)— X .

In order to see (3.6.0), let ye ¥ —s(GQ), ye YV — X; then Gi5(y), hence by (2.3)
there is a Gy, open in X, such that G,€3(y), GG, = 0. Therefore s(G)N
M s(G,) = B and s(G)) is a neighbourhood of y which does not intersect s{&);
by this (3.6.1) is established. |

4. Cech spaces. For obtaining an casier formulation of the internal
characterization of Cechi-complete spaces and of related properties, let us
introduce the following terminology.

Derixirion 4.1 Let (€,) be a sequence of systems of sets, and 2 a
system of sets. 9 is said to he subordinate to the sequence (&) if, for every
11€N, there are a set A,<9 and a set C, €6, such that A, cC,.

DeFINITION 2. Let X be a topological space. A Cech sequence (Ceth
F-sequence, Cech g-sequence) in X is a sequence (€,,) of open covers of X such

that every centred system ¥ (composed of closed sets, composed of open
sets) subordinate to (C,) has a cluster point.
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ProrposiTion 4.3. Every Cech sequence is a Cecht f-sequence and a Cech
g-sequence |

Now the internal characterization of Cech-complete spaces can be for-
mulated as follows:

(4.4) A Tychonoff space is Cech-camplete iff there exists a Cech f-sequence
in X.

It is known ([8]) that Cech f-sequences can be replaced here by Cech se-
quences:

(4.5} A Tychonoff space is Cech-complete iff there exists a Cech sequentce
in X,

Moreover, it is not difficult to show that we could repiace Cech
f-sequences by Cech g-sequences also.

LEMMA 4.6, In a regular space every Cech g-sequernce s a Cech f-sequence.

Proor. Let (€,) be a Cech g-sequence in the regular space X and 9 a
centred system of closed sets subordinate to (€,). Denote by B the system
of all open sets that contain at least one element of 9. Ciearly 8 is a centred
system of open sets subordinate to (€,) hecause A,e¥, C.c€, A,cC,
implies C,¢%B. By hypothesis there exists an x¢ N{B: B¢B}. Suppose x§ A
for a set A¢9. By the regularity of X there are open sets {7 and V such that
xeV, AcU, UNV =@. Then Ue®B does not intersect the neighbourhood
V of x; this contradiction shows that x¢ N9 |

Lemma 4.7. If, in a regular space, there exists a Cech f-sequence, then there
exists a Cech sequence also.

ProoF. Let X be regular and (€,) a Cech f-sequence in X. Let %, con-
sist of ail open sets B such that B< CeQ,, for a suitable C. By the regularity
of X this is a cover. Let A be an arbitrary centred system subordinate to
(%,), and denote A = {A: A¢9). Clearly ¥ is a centred system of closed
sets, subordinate to (§,), hence there exists an x¢ N |

THEOREM 4.8, For a regular space X, the following stalements are equiv-
alert

(@) There is a Cech g-sequence in X,
(b) There is a Cech f-sequence in X,
(¢} There is a Cech sequence in X.

PROOF. (@)= (b) : 4.6. (b)=(c) : 4.7. ()= (a): 4.3. ]|

Now let us introduce the following terminology (cf. [8], p. 398):

DeFINITION 4.9. A space X is said to be a Cecht space (Cech f-space,
Cech g-space) iff there exists a Cech sequence (Cech f-sequence, Cech g-

sequence) in X.

By 4.8. the three concepts coincide in the class of regular spaces, and by
(4.4) or (4.5) they coincide with Cech-complete spaces in the class of Tycho-
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noff spaces. We shall show that, in a certain sense, Cech g-spaces can be
considered as a natural generalization of Cech-complete spaces; however,
Cech spaces have many similar properties too (see [8]).

Proposttion 4.10. Every Cech space is a Cech g-space and a Cechr f-
space. If X is regular and a Cech g-space or a Cech f-space, then it is a Cech
space.

Proor. 4.3, 4.8. ||

5. Properties of Cech g-spaces. By (2.1), we have obviously:

THEOREM 3.1. Every almost compact space is a Cech g-space. ||

Concerning heredity properties, we can prove two statements:

THEOREM 3.2, A regularly embedded open subspace of a Cech g-space is u
Cech p-space.

Proor. Let ¥ he a Cech g-space, X < Y reguiarly embedded and open,
(8,) a Cech g-sequence in V. Define ¥, to be the system of those open sub-
sets B of X for which B¢ X (with the closure in ¥) and Bc C,, for a suitable
C.€€,. Then B is a cover of X; in fact, if x¢X, there is a C, €, such
that x¢C,, and aun open V such that xeVcVcX, then xeC,NVeSB,.
We show that () is a Cech g-scquence in X.

In fact, if A is a centred system of open subsets of X, subordinate to
(B,), then it is also a centred systen: of open subscts of ¥ subordinate to
(€,), hence there exists x¢ N{A : A¢¥}. Choosing A, £ such that A, B¢
€8, we see that A, X so that x¢ X and it is a cluster point of ¥ in the
subspace X. |

THEOREM 5.3. A regularly embedded, dense G, subspace of a Cech g-space
is a Cech g-space. .

Proor. Let (€,) be a Cech g-sequence in ¥, X< Y dense and regularly
embedded, further X = 1 G, G, open {in Y). Define B, to be the system

1
of those relatively open subsets B of X for which B = HN X, H open in
Y, HcG, (closure in Y)and Hc C,€E, with a suitable C,. Then B, is a cover
of X; in fact, if x¢ X, there is a €, €€, such that x¢C,, and an open {in V)V
such that xéVc VoG, and xeVcC ,NXcB,. We show that (B,) is a
Cech g-sequence in X.

Let U be a centred system of relatively open subsets of X, subordinate
to (B,). Define A’ as the system of those open (in Y) sets A" for which
A'NXeA. Then A is centred and subordinate to (€,); in fact, for every
#neN, we find a set A, €% such that A, c B, €%, hence sets D,,, H,,, open in
Y, such that

A =D NXcB,=HNXcCeC,, HCG,,
and
A, =D NH.NC.NX, D.H,NCeW .
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Therefore there exists xé [ {A 1 A2}, Since. with the above notation,
xeD, (H,nC,cH,cG, for every 1, we have x2 X, Finally if A= DX,
DedC) then xeDZ DX < A since O is apen and X is dense in V. Hence
XA X and xis a cluster point of 9in the subspace X. |

We shall prove a product thearem far Cech g-spaces. For this purpose,
fel us first define:

Desixitioy 5.4. A Cech sequence (g-sequence, f-sequence) (§,) is said
to he monotone iff ¢, —CG for neN.

Lemma 5.53. In a Cech space (g-space. f-space) there exists a mionoinne
Ceel sequerice (g-sequence, f-sequence).

Prook. Let (6,) be an arbitrary Cech sequence (g-sequence. f-sequence)
r

and let B, denote the system of all open sets 3 such that Bo 1 C; for
1

suitable sets C2€; (=1, ...,m). Obviously % _ ., B is an npen
cover, and a centred system ¥ subordinate to () is subordinate to (€,):
hence (B,) is the sequence we are looking for. |

Toeoren 3.6. The product of couniably many Cech g-spaces is a Cech
g-spuer.

Proor. Let (84) (1€N) be u Cech g-sequence in X; for i< N. By 3.3, we

can assune that every sequence (G1) is monotene. Tn the space X - X X,
r= 1

define €, o he the system of all products ¢ C, such that C,2¢, for i=un
i1
and C; = X, for i -1 Clearly €, is an open cover of X.

We show that (€,) is a Cech g-sequence in X. Let ¥ be a centred system
of open sets in X, subordinate to (€,). The finite intersections of the men-
bers of I constitute an open filter base that generates an open filter; by
(2.4) the latter is contaitted in a maximal open filter 359, For a given i2N
consider the system

W, = {p;(8):5¢%  Nisopen),

where p,r X - X, denotes the projection. Clearly 9 is a centred system of
open suhgets of X, Moreover, 3, is subordinate to (€1). [n fact, if n=1,

then there are an A¢¥ and a C¢€, such that A=C. Now C - ;( C; and

R . i . ; . Fal
C,¢8t tor i=n, hence p,(A)c C,cBi. If n=1i, we first select a set C, ¢GB! and
an AcY such that p,(A)— C; and ebserve that, by the monotonity of the
sequence (&), C,£GL. ]

Therefore there is x;2 M{A;: A2} for cach €N, Define x = {x)}).
We show that v is a cluster point of 2. In fact, if V = % V, is a neighbour-

i=1
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hood of x such that x,¢V, and V; is open in X, for i=n, V, = X, for i=-n,
then V. p;{S)=0 for any open sct S€8, i.e. SN p; 1 (V;)=0 for the same S,
and by (2.3) p;t(V;)€8 for i=n so that

V= X Vs 0 oppl (Ve

I i=1

and VA= for A<
For the sum of topological spaces, it is easy to show:
Tueorem 3.7, If X = \J X;, the subspaces X, are disjoint, apenr and
icr
each of them is a Cech g-space, then so is X.

Proor. Let (8%) be a Cech g-sequence in X, and define €, = () G

icI
Clearly €, is an open cover of X. i 3 is an open, centred systenm in X subor-
dinate to (8,), then there is an i such that ¥ is subordinate to (€i) because

A is centred and the subspaces X, are disjoint so that A, cC,€C;, A,,cC, ¢
e, A, A, e is possible only if { = j. Select an i of this kind and define

ma
B = (A X, A}

B is a centred system because the intersection of finitely many members of
A has a still non-empty intersection with an A, C, €€}, A, ¢¥, that is con-
tained in X,. Hence B has a cluster point in X; which is a cluster point of ¥
in X. §
Let us note that conversely:
Tvearem 5.7. If X = J X, is « Cech g-spuce and (e subspuces X, ure
i<f

opent and disjoint then they are Cech g-spaces as well.

Proor. 3.3. and 5.2. ]

6. Generalization of Cech-completeness. We show that, for Cech g-spaces,
there is an external characterization without any separation axjom.

THEOREM 6.1. For an arbifrary topolegical space X, the following sfale-
mienis are equivalent

(a) X is G, in every ordinary extension ¥V,
(b) X is G, in its Fomin extension Y,
(¢} X is a Cech g-space.

Proor. (a)=(b): (2.2).

(b)={(c): The Fomin extension ¥ is almost compact by (2.2) and X is
regularly embedded in ¥ by 3.6. Hence V is a Cech g-space by 3.1 and the
same holds for X by 5.3.

(c)=(a): Let ¥ be an ordinary extension of X and (€,) a Cech g-se-
quence in X. Represent, for a given 1, each C€G, in the form C = DNA
where D is open in ¥V, and denote by G, the union of these sets D. Then X c @,
and G, is opent in V.
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We show X = ~ G,. In fact, assume ve 0 G, ve V- X, Let B denote
i T
the system of all open neighbourhoods of v and define

A = {BMX: BB},

Then A is a centred system of open subsets of X and it is subordinate to
(€,) because, for neN, thereis anopen D such thal € = DN Xel, ye DG,
and then De®B, CeN NE,.. Hence there is a cluster point x¢ X of 9. Since ¥V
is an ordinary cxtension of X, the points x and y must have disjoint open
neighbourhoods U and V. But then Ve, VN Xe¥W so that UV NX =0
contradicts the fact that x is a cluster peint of . By this, we have established

the equality X = [u:; G. §

1

Observe that the fundamental theercm (4.4) is a corollary of 6.1. In
fact, if X is a Tychonoff space that is G, in every Hausdorff extension VY
then, in particular, X is a G, in its Fomin extension by (2.2). Hence X is a
Cech g-space and, by 4.10, a Cech f-space. Conversely if X (still Tychonoff)
is a Cech f-space, then it is a Cech g-space by -L.10, hence a G, in every Haus-
dorff extension (which is ordinary of course).

We nbtain in the same way a proof of (4.5).

7. Properties of Cech {f-) spaces. We add some results on Cech £~ paces
and some improvements of known results on Cech spaces.
_ We first show that the concept of a Cech g-space is distinct from those
of Cech space and Cech f-space:

Tueorem 7.). There exists « Hausdorff space that s a Cech g-space
without being a Cech f-space.

Proor. Let X be the real line equipped with the topology for which the
sets [— M constitute a base, where [ is an open interval and M is countable.
X is a T,-space since! its topology is finer than the usual topology of the
real line.

Let ¥V obe the Fomin extension of X it is T, and almost compact by
{2.2), hence a Cech g-space by 5.1,

Let (6,) be an arbitrary sequence of open covers of Y. Select C,c€,
such that 0£C,,, and then an open interval f, and @ countable set A, such
that Ge I, — M, < C,,. Define

"Mro = "wu lLJ {0}
1
and
) K 1 ]
X € r]j 1.0 —-—k—, T — M,
A, ={x,k=n}.
By

Acl,—M,cl,— M cC,
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the system
A ={A, neN}
is a centred system subordinate to (€,). We show that each A is closed in
Y': this wilt prove that Y is not a Cech f-space because clearly n A, = 0.
1

Let ye¥V—A . If veX and ¥ =0 then y4 A, since the topology of X is
finer than the usual topology of R. We have also 04 A, since (=1, [}— A
is a neighbourhood of 0 in X. Now let y¢ ¥V —X. Choose open, disjoint
neighbourhoods U and V of O and ¥ respectively, further an open interval
I’ and a countable set M” such that 0c /' — M cUJ. Observe that V N I'#0
would imply the existence of an open interval I and a countable set M such
that I-McV, Fp{l-M)=0, whence (F-—MHYNUI-M)={"NH-
— (M JM)=0 because I'(110 is uncountabie; this is impossible by
UNV = 0. Hence VNI =1 so that VN A, is finite and y{ A, again. §

CoroLLARY 7.2, There exists a Hausdorff space that is a Cech g-space
without being a Cech space.

Proor. 7.1 and 4.10. |

ProeLEM 7.3. Does there exist a Cech f-space that is not a Cech g-
space?

ProsLEM 7.4. Does there exist a Cech fspace that is not a Cech space?

For the heredity propertics of Cech f-spaces we can prove:

THEGREM T7.53. A closed subspace of a Cech f-space is a Ceclt f~space.

Proor. Let (€,) be a Cech f-sequence in ¥ and X<V a closed sub-
space. If

B, = (CNX: CEE,)

and 9 is a centred system of closed subsets of X, subordinate to (8,), then
9 has a cluster point in ¥ which necessarily belongs to X_ |

The corresponding property of Cech spaces (which can be proved in
the same manaer) is known ([8], (9.2.22)). For Cech spaces we can also prove:

THeorEM 7.6, A regularly embedded G, subspuce of a Cech space is u
Cech space.

Proor. Let (§,) be a Cech sequence in ¥V and X — ;3 G,, G, open in

|

¥, X regularly embedded in Y. Define 3, to be the system of those rela-
tively open subsets B of X for which B=HNX, H openin Y, HcG, and
!"ICCHE@:” for a suitable C,. Similarly as in the proof of 5.3, we see that B,
is a cover of X, Now if 9 is a centred system of subsets of X, subordinate to
(B,), then it is obviously subordinate to (€,), hence has a cluster point in Y.
Since A,€¥, B.e®,, B, = H.NX, H,cG,, A,cB, imply A,cG,, this
cluster point is in X. |
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This is a slight generalization of the known fact ([8], (9.2.23)) that a
(i, subspace of a regular Cech space is a Cech space; in fact, by 3.2'and 3.4
every subspace of a regular space is regularly embedded.

A product theorem corresponding to 5.6 is known for Cech spaces
([8], (9.2.24)) and can be proved by the same method, using ultrafilters
instead of maximal open filters. For Cech frspaces, the method does not work
because the projections are not closed maps.

The proof of 5.7, with obvious modifications, furnishes:

Tueorem 7.7, If X = ) X,, the subspuces X, are disjoint, open und
el
each of them is a Cech (J~) space, then so is X. |
The following theorem is known for Cech spaces ([8], (9.2.21)):

THEOREM 7.8. In every Cech g-spuce there exists u sequence (B,) of buses
such that if the system B = {B,, 1 1N} Is centred and B, %, then B has u
cluster point.

Proor. If (€,) is a Cech g-sequence, it suffices to define %, to be the
system of all open sets B such that B C €€, for a suitable C,.. ]

CororLanry 7.9. If X is a Cech g-space and every non-emply open sel
in X contains the closure of ¢ non-empty open subsei, then X is a Baire space.

Proor. {9], (5.1). }
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Introduction

In this paper, using a special domain transformation for demains with
non-smooth boundaries of parabolic mixed type boundary valuce problems
defined as in [12], we construct a representation of the one-parameter
translation semigroup R by continuous linear operators of Sobolev spaces
of functions satisfying the mixed type boundary value problem

U

T

tq-U=0

for some fixed ¢ and an erientation function = on the boundary.

The class of domains considered here (called  generalized cylinders)
consists of open subsets of £7: 1 wilh orientation function ¢ on the houndary
satisfying some restrictions necessary to formulate the boundary value prob-
lem and to obtain the tools for applying the sophisticated methods used in
[6), [8], [9], [1}]. These conditions and results obtained in [11] and [12]
are summarized in § 1.

ln § 2. (theorem 2.1) the representation is coustructed.

In § 3. using the methods of [9], [10], we outline the proof of an exist-
ence theorem for a mixed type boundary value preblem as an illustration
of the results. The ¢conditions in the existence theoremm show that the non-
smoothness of the boundary makes some restrictions on the parabolic equa-
tion necessary too which do not arise in the case of smooth boundaries,
We think worth mentioning that this existence theorem presents an ap-
proach to an unsolved problem exposed in [9} (prebiem 3, Problems 18.,
chapter 1.).

§ 1. Preliminaries

In this § we give the defimition of the generalized cylinder and sun-
marize some results concerning it gained in [11] and [12].

Let the sct Lc(fy, «=)XR"CR""! be open for a fixed f,€R. Let us
denote the boundary of Q in 2, := (t,, )X R" hy 9o, 2.
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DerFiNiTION 1.[: The unit vector 7€ R* 7! points into 2 at x€2,, 2 if
the inclusions

(1.1) X+i-ven? with {0

HIV
X4 e\OM with {=0

hold with t¢R, |t]=d and 7R, liv"— 7Y -+ for a suitable fixed pair of
pusitive numbers & and 6.

DerFiNITiON 1.2: The boundary g., 2 is called orientable if a Lipschit-
zian function 7:4dq, Q~+R77Y Jrfl = 1 exists with value t{x) pointing into
0 for each x€9p, 12

DerixiTion 1.3: The boundary oo, £ is uniformly orientable if it is
orientable and a neighbourhood w(p) and positive numnbers «(p)=0 and
&(p) =0 exist for cach peg,, L2 fulfilling the condition of definition 1.1 with
7= r(x), 6:= 0(p) and ¢:= &(p) for each xew(p) du, 2.

Now we are in the position to define the concept of the generalized
cylinder.

DEFiNITION 14: An open set QO R with unifermly orientable
houndary ga, {2 is a generalized cylinder if it satisfies the following restric-
tions:

l. For arbitrary [{, L[l ) the closed set
(1.2) Oc[t, X R
is compact.

2. The zet

(1.3) intiern (W XRPOQ), (€4, =)

is non-empty, where inty. pn denotes interior in £X R™
3. The orientation vector ={f, x) is not parallel with ¢,:= (1, 0)e R X R"
for any (1, X}€9e, 2.

Now we swnmarize the results about generalized cylinders gained in
papers [11] and [12].

Let us suppose that £2cQ, < R is a gencralized cylinder with erientation
function t oo its boundary e, 2. By theorem A§.2 in [11] the orientation
function = has a Lipschitzian extension f which is infinitely differentiable
in the set 2\9,, Q. Considering the solutions of the differential equation

(1.4) F=fm
we pain the following theorem (theorem 2.1 in [11]):

Tueorem 1.1: {f £ is a generalized cylinder then a C manifold can be
eiverr on O with the help of a family of friplets {U., V., W.hic a4 satisfying fhe
Jollowing propertics:
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1. The family {U,}.c 4 of open sels in O, covers o, 2 and V < R*= s open
for each o€ A.
2. The mapping

(1.5) v, (0 X V.~ U,
is co-ordinate function (this means thal
(1.6} Y loW, (0, 2)XV,,~ (0, 2) XV,

is in C= for each a), 0y € A, U, N U, =0).
3.9, (L, V)= U.Ndo, 2 for each z€ A.
4. The restriction

(L7} v, ({0, HU, 23X Ve~ U,
is a C~ mapping for each a¢ A,

Theorem [.1 is valid for arbitrary open set £2c @, cR" with orientable
boundary 2o, {2 and open set 2, ([11]). The following theorems play basic
role in the present paper.

TreEOREM 1.2: If the boundary 9., 2 of the generalized cylinder £ satis-
fies the orientability conditions with universal e(t,)=0, d(f,)=0 in the interval
[t f.]1X R™ for arbifrary I, <f, < < and

(1.8) =1 (P)ife ()

holds for each pepa, 2 with = (p) given in definition 1.3, then an n-dimensional
C~ manifold structure on the sef Q1= QN {{}X R" and a C= homeymorphism
F0: [y, =o)X 82y, —£2 exist With the following properties (&2 is considered as a
C= manifold with beundary by theerem 1.1}:

1. The boundary of Oy, in {{,} X R™ is an n—1 dimensional C= submani-

Jold.
2. The boundary 90,2 uas an n-dimensional C= submanifold is the image

of the product manifold [to, <)X Ly, with the map 0.
3. If g and s, denofe a smooth curve in Q with properties g(s,)< o, 12,
g (s,) = ©(g(5,)) and a C= transformation of  inlo itself given by

(1.9) Sp(t):= T (e,-h+ Z (), ueL
for arbitrary he R, h =0 respectively, then

(1.10) [sn (g o) ] = 7 (54 (g ()
holds.

THEOREM [.3: If a generalized cylinder @ satisfying the conditions of
theorem 1.2 has an orientation function = orthogonal to ¢, = (1, 0) at cach

point of 3o, Q then theorem 1.2 holds with « homeomorphism
=1 (g, F6,) [y =YXy~ QCRXR"

16 ANNALES — Sectio Mathematica — Tomus XXV,
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that satisfies
(1.12) By, Py =1, (t p)elty, »)KQ, .

Using the manifold structure given by theorem 1.1 on € and o, (2 we
can define spaces of differentiable functions as follows:

DeriniTION 1.5

I, C*(o 88 vy = {u|u: do, 2~ R and i is continuously differentiable
on the manifold i timea.}

2, CE(Q, 7):= {ulu: 2~ R and u is continuously differentiable unt the
manifold & times.}

3. C0 (2, 1) = {ulue N C*(£2, 7) and u has compact support.I
fi—=1

In the definition 3.1 7 appears to emphasize that the differentiation is meant

on the C= manifold generated by r.

With the help of a special partition of unity and the local co-ordinates an
11+ 1 dimensionat measure v and an #A-dimensional measure g can be defined
on £ and cn the submanifeld 3, Q resp. preserving the rule of partial in-
tegration for the derivatives in the sense of the manifold structure (see [11],
§ 3.).

Using the measures r and g, families of Soholev spaces {H*(.Q, ))sck
{15 (D, 22, 1)}sere can be defined on 2 and on the boundary g, £2 in a way
foliowing the one in chapter 1. of [9] and § 3. of [I[]). The trace theorems
are also valid for these Sobolev spaces ([t1], § 3., section 2.).

Let g€ C/{de, £2, 7). Our aim is to give a representation of the semigroup
[S%ers given in (1.9) by continuous linear injections of subspaces of Soboley
l - .y
spaces defined by the boundary condition

g U
(1.13) AL =0,
s

In § 2. we formulate the problem exactly and give the formulae of the
infinitesimal generators of the representations.

In § 3. we prove an cxistence theoremn with the help of infinitesimal
generators for mixed type boundary value problenm.

§ 2. A representation of the semigroup {S,}icx-

In this § we um, the notations introduced in § 1.
Let ¢€C'(A. L2, r) be a fixed bounded function with bounded first

derivatives. CU.F(._, 1) denotes the function space given by

@.1) Ch o (@2, 1) i {uid)(u):: L -
| ,})T ey, ©
gl .
tlg, =0, - =0, u(U(_-, N, r)}.
ot i
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The space Cj (£, 7) contains the functions of C; (22) therefore it is non-
empty and W1de enough.
By the trace theorem (see [I1], § 3. section 2.) a continuous linear

mapping

k
©2.2) HS (@, ©)~ % HV2 (95, 0, 7)
i=0
igl
(2.3) U*{ﬂ!f 0.1, ...kl wers(@ 0
ar
exists.

It is easy to prove using the mapping given in (2.3), that the boundary

operator @ : C'(Q, 7)~C'~1 (3, 2, 7) defined in (2. I) can he extended to a
continuous linear mapping from H'(Q, 7) into H~12(),, O, 7). Denoting
this extension also by ¢, the subspace @-'(O)YcH!' ({2, r) contains
C} 4 (90, 2, 7) and by the continuity of @ it is closed.

Denotmg by H3 (€2, 7) the closure of C (2. 7) in H' (L, 7), the relation

(2.4) H3 o0, 1) &~ (0)

follows from the preceding considerations.

Qur aim is to give a continuous bounded one- pdrameter scmlgroup
{Qu}ner+ of the continuous linear aperators Q,: H} {2, 7)— {2, 7) rep-
resenting the semigroup {S,}ucr+.

First we define a family of continuous mappings

{Qubners. QuaiCog(7)~C (D7)

as follows:
a7y if 3,2, (1,2 =S,(.7
25) Q@ (t.9:= "7 T IO (D) =5, 2)
if AW, 2)eQ with (t.2)=S,({,2)
for ucC? (2, 7) and {1, )€ L2

As the function ¢ is not invariant with respect to the translations
Sy, HCR™ it is evident that in general @, , (4)4 C) o (2, 7).

Now we shall prove the foliowing lemma.

LemMA 2.1: To the family of mappings {Q, Jner+ given by (2.5) a fami-
ly of functions {Q, }uier<CH(€2, 7) can be found such that the linear
operators {Q,cr+ given hy
(2.6) Q)= Qup(t. X} Qualt) (L x), ucC (2. 7). (Lx)ed
are continuous mappings of Gy, (€2, 7) into C, , (€2, 7) for 1< R’ and they
forn1 a continuous hounded one-parameter semigroup.

Proor: The function ¢ can be extended as a constant tunction along
the solutions of (1.4) in each co-ordinate neighbourliood U, x€ A given in
theorem 1.1. Taking these extensions we have a well-defined extension

peCt of ¢ on the set U U,
€A

16
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Let us formulate now the condition of the inclusion Q,(t)eC| (2, 1)
for arbitrary u¢C} (2, v). With the help of the solution p(-, s,. 2), zﬁ;),, )
of (I. 4) we have the cendition

@7) - (Q;,(u)(y(s S0 2)) + 7 (¥ (5 S0 ) Q4 (1) (5, S0 2))faosy = 0.

Takmg into account the property of S, expressed by
(2.8) V(8o S0 Sy @) = S, (¥ (o 805 2))

proved in [12] (proof of lemuma 2.5) and the definitious (2.5) and (2.6), the
condition {2.7) can be written into the form:

(2.9) Tjs 1Q: (84 (75 50 2)) - Qs @ (S5 (5, 50 D)) +
+ (S5 (7 (5 S0 2))* Qi (Sn (P (5 500 2D} Qo () (S (¥ (55 500 ) Yy, = O

By the definitions of @, , and the function space C%, (22, ¥} we gain the
following relations:
(2.10) Qui{0) (S, (1) = u(y). €O
and
N it
(2.11) -T(y(s’ S0 2} + ¢ (VS S5 2)) - UV (55 Sgr 2))is=se =

f.

for any ueCy (2, 7).

Writing (2.10) and (2.11) and the evident consequence ¢ (v (s, 8, 2)) =
= Qo.s @)(Sh (v (s, s, z))) of (2.5} into (2.9) we have the condition

o 1 0 . .
(2.12) Il a; [Ql.h (*Sn (0 (s, 50 z)))] +Qua (‘Sh (v (s s Z)))X
X[ (5, 076 50 2)) = Qun @ (5, (5. 50 )} (762 50 Dm0

equivalent to (2.9). As (2.12) is valid for arbitrary ueCl, (0, ) we gain
the sufficient condition

(2.13) -_-_j’s Qui (S0 (8,50 D))+ Qu (G5, 50, D) X

x [!}C (S;, (}’ (S. sm z))) - Qu.h (Q’) (Sfr (.1" (S! 50’ Z)))] = ()

for satisfying (2.7).
Considering the condition (2.13) as a parametric differential equation
with the parameter z¢ ., 2 its parametric solution has the ferm

—f o & G, s, 20— @y, (e U e, s, 23} e
(2.14) Qo (¥(5, 50, 2) = C(z hy-e 0
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Let us define a function @: U U,~R by:

2 A

(2.15) @ (w):= f&(y(u,so,z))du, W= y(S,5p2), 2€da, 2
0
for we N u,.

€A
From the boundedness of the function ¢ and that of its first derivatives

it is easy to give a bounded function @¢Ct(Q, ) with bounded first deriva-
tives coinciding with & on an open subset of 2, containing Jg, 2. Denoting
by L the Cl-norm of &, let us define the required function ., as follows:

(2.16) Quull, x) 1= oLt o= (2190 (3}t 0)

if (t, X)eR, heR~.
[t is easy to check that

(2.17) Qu(t):= Q- Qn,n (1) Ecé,w (@, 7)

for arbitrary ueCl, (2, ). Moreover the family {@, er+ is a continuous
hounded semigroup of operators of C} , (2, 7). This proves our lemma.

It is easy to prove that the operators of the semigroup {Q,}acr- as
Hy ¢ (02, )~ H} - (22, ) mappings arc also continuous.

1 we take the measure defined by means of the transformation
A6 £y, oo )Y X &y, — 2 on (2 and equivalent to the Lebesgue measure then using
the norm an H, . (£, 7) generated by this measure [eads to the boundedness

of the semigroup {Q Jner+-
The summary of the above considerations is the following theorem:

THeorem 2.1: The family {Q)ner+ of continuous operators of Hy (22, )
given by (2.17) is a continuous bounded one-parameter semigroup Wwith the
parameter RER™.

The infinitesimal generator of the semigroup has the form

218) (. VLU [_ __,2_@—_0%]
( ) Au ai a(/?(j—i_u i ()% ——;“ i HEH (__, )

itt the case of tiieorem 1.2 and

210) 4y— 2% - _f’@] A, _du )
( ) Au it +u[ L Y + PYRRY A uEHj (2, 1)

in the case of theorem 1.3 with 76, given by J6 =: (4, 4,)c R X R".

Proor: The formulae (2.18) and (2.19} are simple consequences of the
definition of the semigroup {Qjncrr.

It the next § we prove existence theorem for a mixed type parabolic
boundary value problem as applications for theorem 2.1.
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& 3. Existence thearem for a parabolic mixed type
boundary value problem

In this § we follow the way given in chapter [. of [10]. As this § is
intended to illustrate the use of the preceding considerations. we shall oaf-
ling only the proofs with referring to the sources.

From now we suppose that the orientation function r of the generalized
cylinder £ has values orthogonal tn (I, 0)< R R". This property implies
the validity of (1.12) in theorem 1.3 and the infinitesimal gencrator of the
semigroup {Q,Jrer+ given in theorem 2.1 has the form of (2.19).

Now we have to define some function spaces.

First of all let us decompose £2 into the disjoint union of the sets £2, =
= DX R, ety «)y=:1 as C~ wanifolds genuatul by 7. Hi, (22, 1)
denotes the closed subspace of the Soholev space /11 (€2, 7) defined the same
way as Hj (€, r) is given in § 2.

An element u of the product space >< i (2, ) is called square in-

tegrable if the positive function Hulh_q,r:(u, e )y—~R+ is measurable and
square integrable with norm - [, & « in 1}, (£2., 7).

‘\Inw we shall choose a class from the elements of the product space
0.0 (82, 7) as follows:

L, (>< Hy (2 ) *u|ur >< Hi (2, 7)., the mapping - @/ u,
(fg, ==} = H) {20 1) i mea«:mahie m strong sense and i is square integrablc:, .

(3.1)

(From the definition of Q, in theorem 2.1 the existence of Q' he(ty, «)
follows ohbviously). It is easy to check that [, (}( Hj (12 r)] is a Hilbert

space with the scalar product
(3.2) f (up, v),dt =:[u, v
fn

with (u, ), being scalar product in H{,(Q, 1), te(ty, =) for u, 1€
oy (X Hio (7))
ey

The simplest way for the definition of the Sobolev derivatives by para-

meterfin L, (>< He, (7 )) is fo consider the elements of L._,( He (U1 ))
fc

as functions 2R being in L, (2, r} by virtrue of definition (3.1) and to take

the differential operator —::— in the sense of distributions on them. Selecting
t

a class of elements from L2(>< H§ o (£2,, r)‘) fulfilling the condition
tel
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i d
(X Hyo (2 1)) = {u o e L, (0.7 HELy (X Hi (O -c))}
te ; v di el
(3.3)
it is easy to see with the help of Fubini’s theorem that the space
m (>< H} o (82, 1:))

coincides with Hj , (€2, 7) (Details can be found at theorem [.3 in chapter
I. of [O]).
Now we may turn our attention fo the parabolic differential operators.
First we define a family of strictly positive definite bilinear forms
giving a measurahle function ¢ -a{t: (1), v(t)), (cft,, =) for each pair
i, veH! ( £2,, r)}.
fe

If A denotes a bounded measurable nXxn matrix-function - RAxn

with the properties _
(ALX)E E)=c- g

(3.9) (A Xy =z ||E]) - |In]

for o, =0, &, e R and C is 4 bounded measurable function 2 - R then let
the bilinear form a {¢; -, -) be gives by

(3.3) a(f;u,v):= f{(A(i D, u, D ovy— [3;??‘- D u]

La)

-t
L
(})Ji )ff] i v}d1r+ fr,r-(i, u-vdo, UCH} {8 1)
iy

with the functions 2, ¢, @ and the constant L given in the preceding §,
the measures », p given in § 1. and the Sobolev derivation in H'{Q,. 1)
denoted by D,.

By viriue of the trace theorem the restriction uj,q, of any function
e HH {2, 7y is In L, (3 {2, ) and this mapping is continuous, Therefore con-
sidering the last term of (3.3), we obtain the triviat upper bound

-|CU YL+

(3.6} f gru-vdo o =<fghe o il oonn - IWieywenn =
oy

={lglle - o 2, o - Vawea
for u, v g o (€, 7) and any €[ty ).

On the other hand, once an interval [f,, T is fixed the constant L
given in the preceding § can be chosen so large that the inequality

37 cty+L- [_j_%, 335](: x)= (e+c).”¢|;f,m.l'a;:6”

is satisfied for each (£, X\)cQ N [f, T)XR".

L

[
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Now we formulate a condition for the positive definiteness of a(f; -, ),
te[t,, T]in the following lemma:

LEmma 3.1: I the lower bound = of the matrix function A satisfies the
inequality
(3.8) . ‘M’E
at e,
then the continuous Dbilinear fnrm aff; -, ) Hy o (@, )X Hy . (2, 1) R
given in (3.5) is strictly positive definite, i.e.

3.9 al{l;u, uy=a, |u||H1 S

holds with a lower bound «,=0 for u¢H§ Q,(Q,, 7) and f€[t,, T]

Using the inequalities (3.6) and (3.7) the proof of the lemma follows
cvidently.

As the semigroup {Q,}acr+ is bounded, the spectrum of A given in (2.19)
is in R7. Therefore A is a positive semidefinite operator. It is easy to see
that the operator A can be considered as a continuous mapping

HY (X H o (00 2)) =Ly (2, 7).

+ilgie

I T}

Summarizing the above considerations, we obtain a strictly positive defi-
nite bilinear form
B:.ip ( X Hy o (82, r)) X fft ( X Hj o (Qp 1:)) -R
1€ (t, T) t€(to, T)
in the form

.
(3.1 B(u,v):= j a(t; u, vydt+(Au, )
Iy
for
u,ve H! ( X Hi (2, r)) .
1 (s, 1)

By virtue of the proof of theorem 1.1 in [9] the equation

@.11) B(u,v) = (f,7)

has a unique solution ueHl( X Hy (2, r)} for arbitrary fixed f¢
£ Ly (Qq, 0 ) et T

Let us suppose now that the matrix-function A and the solution « of
(3.11) are continuously differentiable in the sense of the manifold defined

ont L. Then using the formulae of partial integration, we obtain the fotlow-
ing forim equivalent to (3.11):

(3.12) f %— 9. (A D_,_u),-+c-u]vdv+
[/ =1

S(to, T)

f{(ADxu,r)w-u}vdg: [f-vdv.

?Q¢t0, Ty YU, T)
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If the function i satisfies the condition
(3.13) (D,u, A*t)4-q-u=0

then the solution # of (3.11) solves also the second order parabolic differential
equation

(3.14) "”--—iaf(n D ), +cu=f

dr i3

with the boundary condition (3.13).
Therefore if both vectors A* v and r point into £2 then taking the manifold
generated by v and the Sobolev space H! ( X Hj (2, A* 1:)) generated by
1e1 :

A*z and applying the existence theorem outlined above on
HI(X HE (0 A*r))
el

instead of
HY (X g (00 7))
I1¥]

we get the following theorem:
THEOREM 3.1: If
(a) the mapping A is bounded continuously differentiabic sirictly positive
definite matrix function A:Q—Rxo,
(b) the function C: QR safisfies the conditions of lemma 3.1,
(c) both vector functions  and A%« poinf info 2 and
(d) ¢ Cl{(dn, 2, ) and ifs first derivatives are both bounded
then the parabolic equalion

(3.15) ')—u—za,-(ADxu),-+c-ff:_f
at f—1
as a unique solution ueHl( X H§ o (82, A* 1:)) in the sensc ex-
t€(tn, T)

pressed by (3.11) for arbitrary f€L, (€2, v) and [i, T]C [ty ).

This solution satisfies the boundary condition (3.13) also in the gener-
alized sense.

The condition imposed on T and A*z holds evidently in the case of
smooth boundaries for any positive definite matrix function A:Q—-Re2xA

Our aim with the choice of this example to illustrate our results was
to show the effect of the non-smoothness of the boundary on the selvability
of the parabolic boundary value problem stated in (3.13) and (3.13).

The methods used in [9], [10] for the investigation of the smoothness
of the solutions can also be applied as it is shown in [[1].
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PSEUDOCOMPACT EXTENSIONS

By

A, SAPSAL and Z. SZABO
[. Department of Analysis, L. Edtvas University, Budapest

{ Recefved November 11, 1973 )

0. Introduction

The theory of extensions is one of the largest and richest part of general
topology. The theory of compact and realcompact extensions has been
examined especiaily minutiously.

Our paper deals with pseudocompact extensions. We introduce the
notion of pseudocompactification and will look for spaces which have a
- pseudocompactification. A type of pseudocompactification will be con-
structed to each complefely regular T-space. The notion of pseudocom-
pactificational classes of functions will be introduced and we shail establish
a necessary and sufficient condition for a class of functions to be pseudonenm-
pactificational. Using these tools, each pseudocompactification of a com-
pletely regular 7i-space will be constructed. Finally, we shall examine the
following preblem: what kinds of spaces have a maximal pseudocom-
pactification?

Throughout this paper “space” will mean a completely reguiar 7T3-
space. The classes of the continueus and the bounded continuous functions
of a space X will be denoted hy C(X) and C*(X), respectively.

L. Pseudocompactifications

I.] DeFiximiON. A pseudocompact extension Y of the space X is called
a pseudocompactification of X.

Since the Cech-Stone compactification is pseudocompact, it is clear
that every topological space has at ieast one pseudocompactification,

I.2 DEFiNITiON. Let X be a topological space, f¢C(X). f can be ex-
tended to a function f*:3X —~R*, where R* = RU{=} is the Alexandroff
compactification of R. The point x€8X is infiniie if there is an feC(X)
such that f*(x) = . If x¢8 X is not infinite, it is finife.

It is clear that every x€X is finite in g .X.
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The following characterizations of realcompact and pseudocompact
spaces are well-known:
[.3 Tueoresn. X is pscudocompact iff everv x£3 X is finite.
X is realeempact iff every x¢3 X — X is infinite.

Now we can easily construct a psewdocompactification which s not
compact.

L4 Thueeres. Led X he o fopelegicdl space and
X = {xepg Xooxois infinitey DX .

7 X is a psendocompactification of X und =X is compact Iff X 15 reai-
eomipdet.

Proor. X XX, sn X s dense in =X and 77 X =3 X, Consider
JeC(x X)y, then fINCC(X). [1X can he extended to X, let this function
he f*. Since ihe extension is unique so f*l= X = ic. f# is an extension
of f, too. For a point xéf X —a X, we have f¥(x)£R, since f%(x) = ~
implies x¢x X. This mewrs that every point of JX—aX=73aX-7X
is finite, thus, 7 X is pseudocompact.

Let X Dbe compact. Then, of course, v X = 7 X, 50 every point x«
23 X - X is infinite, that is, X is realcompact. O the ather hand, if X is
realeompact, then, of course, N = JX, i, 7 X is compact.

[.5 CoroLrary. Every non-realcompact space has a non-conipact
psendocompactification, ez = X.

1.6, DerFixrriox. The class & of functions on X is ¢ psendn j-compactifi-
cational if there is a (pseudn}-compactification ¥ of X such that C(VY.X = &

The following theorcin, characterizing the compactificational classes of
functions is well-known. {See [2], 14, 1.10)

L7 Tueores. The cluss @ of functions vn X s compactificational iff

(a) P CHX).

() D is closed under poinfwise additing, mudtiptication and contains the

coustanl frunctions,
(¢} @ is closed wider wniforn convergence,
(D) 3(DY = {1 ([OY): fod) forms u closed buse i X.

L& THeorey. @ is o eonpactificafional cluss of fuoctions iff if Is a
pseudocompactificational e,

Proor. If € is a compactificational class then it is pseudocompactifi-
cational too, since a compactification is also a pseudocompactification.

[t & is a pseadocompactiticutional class then there exists a pseudocom-
pactification ¥ such that & = C(¥):X. In this case, conditions (a), (b}.
(c) and (d) of Theorem [.7 are satisfied. consequently @ is a compactifi-
cational class of functions, teo.
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1.9 DeEFINtTION. Let X be a topological space, ¥ and ¥’ two pseudocom-
pactifications of X. Y is finer than Y’ if thercisamap ¢ : ¥ =Y whicl is
onte and keeps the points of X fixed.

110 THEOREM. Lot ¥V o aud Y™ he fwo psendocmnpactifications of the
lopologicul space X, @ and @ the corresponding pseudocempactificational
classes of functions and suppose that Y is finer thun Y. Then o’

Proor. If ¢ : ¥V — V7 is an onto map which keeps the points of X fixed and
Jed, then there is a g€ C(Y7) such that g| X := J. Then, clearly g o ¢ €C(Y)
and g = ¢! X = fsince ¢ fixes the points of X,

L Remani. [t is casy to see that it ¥ and Y are compactifications,
the converse of the theorem is also true, ie., if @@ then VY is finer than
Y’. This means that two compactifications of X are equivalent (in the usual
sense, i.e., between them there is o homeomorphism which keeps the points
of X fixed), it and only if the two compactificational classes of functions are
the same. The fact that this converse fails to hold for pseudocompactifi-
cations is shown by 32X and =X; both of them are pseudecompactifications
of X and ¢ = C¥*(X) for cach case, but, of course, for a non-realcompact
X, neither of them is finer than the other one.

LLI2 THEOREM. Let X be a topological space, © a pscadocempuctificatio-
nial class of functions, V o pseadocompactification belonging io &, Then erery
Yo ZCBY is u pseudocompuactification of X belonging o @ and 3Y is the
compuclification belonging 1o ¢, Hence every pseudoeomnpactificafion belong-
ing to @ is u subspace of the compuactification belonging te &.

Proor. If ¥V is a pscudocompactification of X belonging Lo o, then
@ = C(V)|X. Every member of C(Y) is bounded, hence it can be extended
to £V, so every member of @ can be extended to Y.

Thus, if VcZcaV, then every element of @ can he extended to Z (in
fact, they can be extended even to 7Y, but no function of C(X)—@ can be
extended to Z (not even {o ¥). On the other hand £ is an extension of V
and Z is pseudocompact since the pseudocompact subspace ¥ is dense in if.

Applying this result to £ = 7V, we can see that 2V is a pseudocompac-
tification belonging to @ too. On the other hand 7Y is also a compactification,
thus, according to the Renark above, 3V is the compactification of X be-
longing to 4. So the proof is comiplete.

Applying 1.8 and [.12, we can classify the pseudocompactifications of a
space X according to the pseudocompactificational classes of functions
which are characterized by 1.7 and .8, We have seen that if ¢ X is the com-
pactification belonging to the class €, then, for every pseudocompactiti-
cation ¥ belonging to @, we have X« ¥ oy X. To find every pscudocompitc-
tification of X it is enough to prove:

.13 THEOKREM. Lot X be a fopolegicul space, & a compactificational

class of functions on X, ¢ X the compuctification belonging to ®. For arbifrary
JeC(X), lef us consider
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A= {x€p X f(T(X) (N (X)) docs not converge in R}

where 28 (x) Is the neighbourhood fitter of x in ¢ X. It is clear that A, =0 iff
Jed, Let us denote

(}':{S:SﬂA;_—_‘_U__ v feC(x)—d}.

Y is u pseudocompactification of X belonging to & iff there is un Sc€o such
that

XJS=YceX.

Proor. Necessity: Let ¥ be a pseudocompactification of X be-
longing to @ and f£ C(X) arbitrary. If AN (Y- X)=0, then f(R(x)(N)
{X}) is convergent in R for every x¢ ¥, thus f can be extended to ¥V because
of the regularity of R. Heuce feb. This shows that ¥ — X €.

Sufficiency: If Sco then XcSUX = YoeX, ie, Y is an ex-
tension of X. Every function of @ can be extended to Y (in fact, to ¢ X).
If feC(X)—®, then A;NS=0, that is, there exists a point x€S such that
FER()(N){X}) is not convergent. Hence, f cannot be extended to Y. So
the functions that can he extended to Y are exactly those which are in @.
On the other hand, the members of @ are bounded, i.e., every continuous
function on Y is bounded. Hence V is psendocompact.

2. Maximal pseudocompactifications

As well-known, X is the finest compactification of X (in the sensc of
1.9). Evidently the guestion arises whether there is always a finest pseudo-
compactification or not.

It is easy to see, the answer is no. In fact none of the pseudocompactifi-
cations of X can be finer than 3 X, except 7X itself. Suppose that the
pseudocompactification ¥ of X is finer than £X, ie., there is a mapping
Y =8 X onto and fixing the points of X. X is the finest compactification
of X and gY is also a comipactification of X, hence there is a continuous map
w1 X —~AY which Keeps the points of X fixed. y =ypoq: V-3V is a map
onte AY which fixes the points of X. This means that y is an extension of
y: X ~gY to ¥V, but then, because of the uniqueness of the extension of
un arbitrary function into Y,  =1id,, thus it cannot be onto usless ¥V =
=AY and ¥ = gX. Consequently there is no pseudecompactification finer
than X, except 8X itself.

On the other hand, it is clear that X itself is not a maximal pseudoconi-
pactification, unless if every pseudocompactification of X is compact.

Let us then modify the question to read: For every pseudocompactifica-
tion Y of X is there a pscudocompactification Y’ which is finer than ¥ and
XcVcopX?

Let X be a topological space and XY a pseudocompactification of
X. BY is a compactification of X so id,: X -7V can bhe extended to X.
Let us denote the extension by ¢ : X ~3Y. ¢ is unique, since 3V is a 7,-
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space. Let us consider ¢ (V). If there is a pseudocompactification X< V'
< BX such that there exists an onto map u: ¥' ~V fixing the points of X
then, because of the unigueness of extensions, y = ¢| ¥’. Hence ¥ cg '(Y)
e, ¢ (V) is a pseudocompactification of X, Xceg ' (V)cgX and
r (g~ (¥V)) = VY. Thus, we have proved the following

2.1 Tueorem. Let ¥V be a pserndocompactificationn of X, ¢ pX gV Hhe
extension of idy : X~ 3V, There is a pseudocampactification Y’ of X such that
V' is finer than ¥ amd XV <X iff ¢ 1Y) is pseudocompact. In this
case, ¢~ (Y conmtains every Y7 which satisfies the condition above.

The following two lemmas are well-known:

2.2 LEmma. The four statements below are equivalent for an arbitrary
topological space X:

(a) X is open in every Ti-extension;

(b) X is open in every compactification:
(¢) X is open in 5X;

{dy X is locally compact.

(a)=»{h)=(c) »(d) is obvious, for (d)=>(a}, sec e.g. [3], 3.3.9.

2.3 Lemma. In order that a space X bhe pseudoconipact, it is necessary
and sufficient that, for any decreasing sequence {V },en of non-cipty open
sets, M ¢l ¥, be non-empty. See [4], 9.13.

neN

2.4 THEOREM. Lel X be ua locally conipuct space, ¥ u pscudoconipactifi-
cation of X, ¢ : 3X -3V the extension of idy, : X Y to pX. Then ¢71(V) is
psetdocompact.

Proor. Let 0=V g™ (V) be opent in ¢ 1(¥). X is dense in X, hence
in g4 ¥) oo, thatis V' = VN X .20 and V' is open in X. 8Y is a compactifi-
cation of the locally compact space X, thus Xc gV is open, i.e., V<X is
open in 3Y and also in Y. Consequently B4V cq(V), since ¢ is the exten-
sion of id,.. Hence we have proved that, for every open set 0=V ce1(Y),
int, q(V)<0.

Let D= V,cg™Y(¥) be open, V.., <V, (i¢N). This is a filter base.
Let us consider the filter o generated by it. Let us denote V* = iuty, ((,o(V,-)).
Then §=VFc Y are open, and Vi* , = V* (i¢N). V is pseudocompact, hence
there exists v€ Y such that ye v oy V%

i¢N

If $* ¢4 (o), there is an S€o such that ¢(§) = S5*. By Seo there is an
icN such that V,cS. Hence V*cg(V)cge(S) = 8% ie. yeclS* This
means that y is an accumulation point of the filter base ¢{s). ¢ is a perfect
map (since it is a map from a compact space te a Hausdorff space}, thus there
exists an accumulation point xeép'()Ce (V) of o, i.c. of {V}ien (sec e.g.
[F]1.10.2. 1 Theorem.) Hence ¢~ (Y} is pseudocompact.
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2.5 CoroLLary. H X is a locally compact space, then for every pseudo-
compactification ¥ of X there exists a pseudocompactification ¥’ such
that X< ¥’ pX and Y’ is finer than Y.
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ON THE CHARACTERIZATION OF ADDITIVE FUNCTIONS
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Throughout this paper f denotes an additive arithmetical function
and let

gimy=max{f¢n, ..., f(utk—1)

with an arbitrary but fixed &.

P. Erpis proved in [2], that if f is monotone, then f=c-logn.

J. Bircn [1] and 1. KArar [4] showed that the same holds, if f is
monotone on a set having upper density one.

A. Tvaxyr proved in [3] that if g is strictly monotone (increasing) with
k=2, then f = ¢-log n, but if g is anly monotone, then this is not true.

The purpose of this paper is to generalize these results in two directions.
We can summarize our results as follows:

1. If g is a strictly monotene increasing function with an arbitrary fixed
& on a set having upper density one, then f = ¢-log n.

2. If g is convergent, then g is a constant-function, which is non-
negative.

We examine the functions f and g — if g is monofone — in general too.

1. 1. KArar raised the following problem in [4]: Let the function

glmy:=max{f(m, f(+1)}

be a monotone increasing function. What can we say about the function f?
A lvAxvi showed an example, when g is monotone increasing, while f
fluctuates:

I if p=2

(1.1) f(p’):{o P,

17 ANNALES — Sectio Mathematica — Tomus XXV,
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I we further require f to be completely additive, we can give the following
example:

(1.2) f(p):{_] it p=2

0 if pe2.
A. IvAxyi proved in [3], that if g is strictly monotone increasing with

k=2, then f=c-logn This theorem is true, even if the assumption holds
only on a set having upper density one and & is an arbitrary natural number:

Tueorem 1. If g — with an arbifrary fixed k — is a strictly monolone
ficreasing function on a set having upper density one, then f = ¢- log n.

Proor. Let k = 2. We denote by A our set having upper density one,
First we show, that if

acA and a—I<A, then g(a)=f(a+1}).

Itdeed, g(a— 1)<g{a) means

fla—D<fla+l) or f@=fa+1),

consequently we have g(a) = f(a+1).
Consider the set A" = {ac Ala— 1€\ and a—2¢ A}. For ac A’ we haye

(1.3) Jlgy=g—1)=g{a) =/@+1).
Now we prove, that f is monotone on A”. Let & and &, denote two ele-

ments of A” and a<a,. Since g is strictly ntonotone increasing on 4, and {1.3)
is valid, thus

Fay=g@y=ga,-1) = f(a,),

consequently f(a)<f{(a,).

It is easy to see, that if A is a set having upper density one, then so is
A’ too, and so we can use the above-mentioned resuit of KATAr [4]) and
BircH [1]:

If an additive arithmetical function is monotone on a set having upper
density one, then f= c-log n.

For k<2, the proof is similar. |

2. Instead of the monotonity of the function g, let us examine the con-
vergence of g.

We prove the following theorem:

THEOREM 2. If lim g(my =, then c=0 and g=c.

Hee e
Proor. (a} g cannot converge to a negative number c.
If g converges, then g and f have an upper bound, say d=0.

Moreover, to an arbitrary r>0, we can choose an 1, such that for
n=n,

g (m)—¢| <e
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I
| o
[fa)

and
f(My=c+e.
Consider the following system of congruences:
(2.1) x+iEp(i- Oret - PrMOd (Pop ey o Pl (=1 L k),
where the p; are different primes, f(p)<c+s, ris a fixed integer and
£ = — ‘£“ .
2
Then

(2.2) JEH) = flpi_nrer - P (W +SPGvpay - Pl =
=S -vre)t - A p)H+s ) <rctretd=

<" ad=2 (i=1....K)

it r is large enough.

So g(x+1)=2c, consequently g cannot converge to c<Q.

{b) g cannot converge to O unless g = 0.

If there exists a ¢ for which f(f) = a=0, then f cannot be positive or 0
on an infinite set of aumbers coprime with i, otherwise f(r)=ga would be
valid on an infinite set. Consequently, f can be positive only etther (i) on
infinitely many powers of a fixed prime, or (ii) on finitely many powers of
finitely many primes. Moreover f can be 0 only on finitely many powers of
finitely many primes, and in the case (i) on infinitely many powers of the
given prime too.

Consequently, £ must be negative on all other prime-powers.

If f{g)—= —« for infinitely many prime-powers ¢; of different primes
with a positive ¢, then we can find an infinite set, where g is less than —d
{d was an upper bound of [).

Indeed if we look at the (2.1) system of congruences, and instead of the
primes p; we put vur prime-powers ¢, then instead of (2.2) we can assert

[+ —retd<—d (i=1,...,k),

if ris large enough. So g(x4-1)= —d on an infinite set, which is impossible,
if fimyg = 0.
Consequently, to an arbitrary e=10

—e=f{g)=0
except the powers of finitely many primes.

Now if we assume f(f)=0 for some #, then — taking ¢ = F& e
2
have for almost all prime-powers g, ——f‘(:) <f(¢;,)<0, and consequently

&

f(fq,.)}f—gg, This confradicts g(n)—~0. Thus f=0, and so g=0 too.

18 ANNALES — Seciic Mathematica — Tomus XXV.
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But g cannot be negative either. If g(x,) <0 for some x,, then we can
construct an infinite set A, on which g(x)=g(x,) (xcA).

Consider the solutions of the congruence
2.3) x=Xx, mod{X, ... (xo-+k—1))2.

Then

Xbi= X+ DI+ . 4+ . (e +hk—1)1) ((=0,..., k=]
and so
24 fx+D=f+D)+f(1+1 .. )=f{x,+1),
because f=0. So g(x)=g(x,) too, which is impossible, if limg=0. We
proved, that g =0.

We also obtained, that f cannot be negative on the powers of more than
k—1 primes, and on all other prime-powers f must be 0. f can be negative
on the powers of k—1 primes, if the primes are larger than &: we can al-
ways find a number 2 among & adjacent numbers, which is relatively prime
to the given primes on which f is negative, so f(z) = 0 gives the maximum

on all £ adjacent numbers. We can say more too: If §,< ... <q, <k=¢,.,=<

= ...={,, where g; are the powers of different primes and f(g;)<0, then
s<k—r.
To prove this we look at the system of congruences

X+j=q_;jmodg._; (j=0,...,r—1)
and let ¢, =2.
Then

- lx+j and g_jxtitq.; (fj=0,...,r—1).
Because of ¢;.,—¢q;=2 we have
X=x+1l=...=xtr~l=xtr-1+4q,=
<X r—2+G= ... <X+1+¢_,=<x+g§,=x+k.

Jx+0) =@ = fa,-p+f(3) =0

SEHj+g =<0 too (=0, ...,r-1),
i.e. f is negative on these 2r numbers.

So

and

Comsider further x+u,=¢, mod ¢ (f = r+1,...,5), where u, = r,
r+1, hut w#j+q,_;forany j. If s=&k—r, then q(x) = max{f(x+i)|i =
=0, . —1}is negatwe which contradicts g = 0.

If @1:2 let x=2 mod 4. Then Zx+4v v =0, {ﬂ e
f{x+4v)<0. Thus f cannot be negative on more than A'—I_[[Z]Jrl]

powers of other different primes, i.e. sf:k—{%] is true too.
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{¢) g cannot converge to a positive number ¢ unless g = ¢.
First we show, that ¢ is an upper bound of the function f. If there is a
number & for which

fO) =e+d

with a positive nunmber 4, then f cannot be positive or 0 ont an infinite set of
numbers ¢;, which are relatively prime to b, since

f(bg)=c+d

wotld held, which is impossible, if lim g(n)=c.

So fis negative on the powers of ‘irnfinitely many primes. Similarly to
(b), we can prove, that to an arbitrary £>0, there are infinitely many prime-
powers ¢, (of different primes), for which

—-r<f(g;)=0.

If we choose £:= —, then

| e

00) = FO) gy e+ b= 2mer 2

with infinitely many ¢, which is impossible. Thus we proved, that ¢ is an
upper bound of f.

[N

Fix an arbitrary €= —. lLook at the munbhers z,, which give the maxi-

b

mum (i.c. the values of g). Because of g(r1)--¢, there is an 1, to an arbitrary
£={} such, that if z;>n,, then

fz)=c—-.

Look at the possible values of (z, z,,;). Because of z,.,—2z,<k, there
is a natural number «, such that

(Zn2giq)=u

occurs infinitely nften. So

cefllzp z,01)) = f)+ f(2i2)) — [y =20 — 2 — f(u),
i.e. f{ty=c—2¢ with an arbitrary «=0. Consequently f(u) = c.
For (w, ) = |

Fovu) = FW) (W) = f)+e=c,
ie. f(w)=0.

Now we are ready to prove g = ¢. Assume indirectly, that there exists
a number x,, with g(x,) = ¢,=¢, and look at the congruence (2.3). If we
choose { = ut’, then because of f(1+ut)=0, (2.4) is true. So g(x)=g(x,) =
= (p=¢ on an infinite set, which contradicts lim g(n) =c.

He+ oo

18%
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Let us examine what can we say about f in this case. Let v denote the
least number, where f(v) =c. Let

ve gl P
Clearly f(p=)=0, if p=p, (i=1,...,5).
For p=p;
I’ .
1 ) =ren =
pi’
implies
FEy=f(p¥) forall g,
moreaover

JED<rp7) it Bi<q,
(v is the least number, where f(r) = ¢). So the maximums core only from

the muitiples of 1.
We can also prove, thaf f cannot be negative on the powers of more

than [k-]—l primes different fiom p,.
11

Since the muitiples of v give the maximums, so f must be ¢ on least one

of the multiples of ¥ among any adjacent k numbers. If x = I+jv, then

gl =flx+mv—1) = f(j'v)

i e . . [k
with j'=/7+1lor j+2... or j+]{—]|.
v
If f(g)<0 with powers of different primes different from p,

k
[I - l, o [_:i]
I3
then we can choose

j+t=g,mod g} [t: 1[i]]
v

and so f[(j+1)v] = (g,8) = f@)+f(s)=Ff@)+c<c. So g(x)=<c, and this
contradicts g = ¢. So f cannot be negative on the powers of niwre than

[- ]~] primes different from p;.
v

3. Let us examine now, what can we say about the original problem of
KAtar: What is f like, when g is monotone?

(A} H g is strictly monotone increasing, then according to Theorem 1
f=c-logn

(B) If g is monotone increasing and bounded, then it is convergent too,
and so according to Theorem 2 g = ¢. During the proof of Theorem 2, we
received several informations on f. These tan be summarized as follows:
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If ¢ =0, then f{p*) =0 except the powers of at most k—r—1 primes, on
which f can be negative (r denotes the number of the prime-powers smaller
than k of different primes, on which f is negative).

if ¢=0 and v is the least number for which g(v) = ¢, then f cannot be

negative on the powers of more than * — | primes coprirne with v,
v
Examples were given by (1.1) and (1.2) for ¢ = | and ¢ = O respectively.

These can be generalized as follows

¢=0 if = <
@1 fwﬂ:{ it p=p,

0 if p=p,
(3.2) ()= {51“—10 ?f P o=,

0 if p=p,.

(This example is completely additive.)
We can show such an example too, where f is positive on an arbitrary

finite set of primes, if k is large enough:
=0 if p=p (=1,...,9

3-3 Ty —
(3.3) £%) % ;o

and k=p, ... p,.

(C) Finally, let us exaniine the case, when g is monotone increasing
(not strictly) and g is unbounded. We can show examples, where f=¢- log 1.

0 if =2
(3.4 .ﬂm={ v
logp if ps2.
Then
log{n+k—1) if Z24in+k-—1
g(my = [ (THE=D T
log(n+k—2)y if 2{n+k-—1.

This example is completely additive and suitable to an arbitrary k.
Another example for £ =3:

log2 if p=3

(3.5) ,ﬂm=L%pifP¢3_

Then
o _{log(rH-k—l) it 3n+k—1
° log(n+k—2) if 3|n+k—1.

Let us examine now the functions g which satisfy these conditions, i.e.
which are not strictly monotone and are unbounded.
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Because g isn’t strictly monotone, ¢ has identical values too. Then g
has identical values infinitely often too. In the opposite case, g would be
strictly monotone increasing from a number on, and then f must be a same
kind of function i.e. f would be strictly monotone on a set having upper
density one, and so f would be ¢- log i, because of the result of BircH and
KAtal

If we change the function f = c-log 1 on less than & powers of different
primes, which are greater than &, then we can obviously construct such a
function f, that g have £ — | adjacent identical values.

We can raise the following problem: What can we say about the num-
ber of the adjacent identical values? For the time being, we can show the
following weak result:

If f(¢)=0 and f(g+ 1)=0, then the length of the “period” of identical
values beginning from ¢ isn't larger then ¢+ 1. (This is true, because

F@+ 0 =f@+fg+1)=/@.)

Finaily, we prove that similarly to the case g = ¢, f cannot be negative
on too many prime-powers:

Tueorem 3. If g is a monolone increasing function, then f cannot be nega-
tive on the powers of more than k— | primes.

Proor. We assume, that f is negative on more than ¥—1 powers of
different primes say pif (i =1, ..., k).
The system of congruences
x+i=pimod piir {i=1, ..., k)

has infinitely many solutions. These solutions can be written in the follow-
ing form:

X+i=pii(l4+p,)y (i=1,...,k),
and so

F+ D =)+ +p = (1+p1),
consequently

.
A
I

.-ff(x+l)<m{1xg[x+i]-

Thus g cannot be monotone increasing. ||

REMARK: If the least of the prime-powers is greater than k, then f
can be negative on k— 1 powers of different primes (for example fis 0 on
the other powers), but if the least p, is smaller then &, than f can be negative
only on less than ¥ — 1 primes. Analogousty to part (b) of the proof of Theo-
rem 2, we can assert even more: If ¢, are powers of different primes, with
f@)<0and q,=...<g.<k=¢,.,=...=<g, then s<k—r.
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ReEmark: All our results remain valid, if we regard the following more
general function g:
g(my:=max{f(n), f(n+r), ..., fOi+r._).
The proofs are nearly identical,
I am indebted to RoserT FrREUD for his valuable remarks.
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1. Throughout this paper, we use the following notations:

We denote the number of distinct prime factors of a positive integer n
by #{n). The number of elements of a finite set <4 is denoted by |of]|. We put

D={12,2, .. .,m, ),
Dy =122 .. (VN1 dor N=1,2,..),
M, q, k) = {b+q,8+2q, ... b+ kg}

(for b=0, £1,+2, ..., g=12, ... and k=12 ...)

and
AL (b, g, KYND| =D (b, g, k)

(ffor b=04+1,%2,..., ¢g=1,2,... and k=1,2,...).

P. ErDOs raised the following conjecture (oral communication):

If £ is an arbitrary positive numiber, N, T, ¢, @ay - . .. @ ki Koy - -, K7
are positive integers and by, b, ..., by are integers such that N> Ny(s),

(H Ay, g, kYy{L,2, .. Ny (for i=1,2,...,T)
and

T
(2) @NC‘U ﬂ(bis Q‘i! ki)

=1

liold, then we have
T
T > ki=Ni—c.
i=1

17%
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(Roughly speaking: the sequence of squares cannot be well-covered by arith-
metic progressions in the sensc that if few “long” arithmetic progressions
cover the sequence of squares not exceeding N, then these arithmetic pro-
gressions must cover much more integers than ¥ N )

The aim of this paper is to prove the following sharper form of this
conjecture:

Tueorem. There exists @ number N, such that if N is a pesitive infcger
satisfying N=Ny, atd T, @y, Gy ..., G4, Ky, Ky, - .., Ky are positive integers,
by, by, ..., by are integers such that (1) and (2) hold then we have

r ] N
(3) T Xhymoe e
P 00 log* N

In Section 2, we prove a lemma (Lemma 3) from which our theorem
follows easily, as we show it in Section 3.

2. The proof of the theorem is based on the large sicve. We use the fol-
lowing form of the large sieve (see e.g. [1], p. 23):

Lemma 1. Let U be a positive infeger, M an infeger, X a non-negative
real mnber and lef

Ac{My [, M+2, .., M+ U

Zigy= 3 1
ac-t
a=h (mod q)

(Jorg=1,2, ... and I =0, +1, £2, ...y und
Z=7(,0= A== Z 1.

ac o

Write

Then we have
2o FAL 2 .
> ,é(p,h)——] f_:[U +—.X3+3]/:.
p=X G p ¥3
We need also the following well-known lemima:
LEmma 2. Let & be an arbifrary positive mumber. Then for n--n,, we have
v(n)=(l+e) 57
log log
In fact, this can be derived easily from the prime number theorem.

Also, with respect to
2O = J[ 2= ]] z+1) =dn)

piln i
{where d (n) denotes the number of positive divisors of #), this is a con-
sequence of the following theorem of WIGERT (see [3]): for n=rn, (¢} we have

log n
(14 E-ic—g—n—
d{ny=<2 ;
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By using Lemmas 1 and 2, we prove the following iemma (from which
our theorem can be derived easily):

LEvMA 3. There exists a@ number N, such thal if N is « positive integer
satisfying N=-N,, and g, k are positive infegers, b is u non-negative integer
such that

4) A, g, )c{l,2, ..., N}

and

(5) k=100tog® N

then we have

(6) Db, g, k)y=18k"logk.

Proor. Let us define the sequence £ in the following way: a¢c4 should
hold if and only if } =a=k and b+ ag</2. Then obviously, we have

def
Z= || =M q)nD| =D®.g k).

By using Lemma I with this sequence £ and with M =0, U =k and
X = k2, we obtain for large N that

(7) DA i [Z (p, ) — 2000 ] o

p=kY? a=1
9
-::[k+ ok 3] Db, g, k)=3k D (b, g, k).

(Note that for large N, k is also large by (5).) Here we have

l=a=k
b+aqec
a=h {mod p)

Let p be a prime number such that p=-2 and ptq, and let 2, denote
the set of the integers /i for which

f=h=p and [b——HE] = —1
D
hold [where (i] denotes the chendre-symbo]]. Then obviously, he@,

D
and a=h (mod g) imply that b+ag$74 and thus
Z(p,y=0 for hek,,

furthermore, by p{q, we have

_r-i
2l =2

19 ANNALES — Sectio Mathematicn — Tomus XXV,
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Thus we have

D b}' !F; .‘,.
() b pZ[Z(p,h) L -’]z
p=kY? o) P
oo Db, g )Y
= > P> [zf(p, f1) —- (q_)] =
Tepsk't pe
plg
Db, gk Db, g, k)
= 3 p 3 [Z (p, 1y - 2000 ] >oop 3 S
2<p=k"?  1sn=p P 2epz=k'® l=h=sp n
plg hER, g hem
f_ L
—1 Db, q, k 4 .
= 3 pPl 6. 4. k) s Dy k=
2-:;‘.'_5!(”2 2 pz ‘_A___p_-_—._k”—" 2
rlg pla
- D g k) _ DO0 K)o
CaegTR e 3 3 vepmitt
hie e
Db, g, k - LD2{b, g, &
f;&[ LD 1] 0B ey -1 @)
3 '_;f_p;—_.kl~ ) 3
By Lemma 2, for large N we have
p(n) =2 _logN forall tT=n=nN.
log log N

Thus by the prime numbet theorem and with respect to (4) and (3), we
obtain from (8) that for large N,

(9) > % [z(p, m- P “’-’~"’ﬁ]2c::
pk'? Ry iy
D*(b, g, k D2(b, g, k Ll . g N
= (3‘1_ )_(ﬂ(km)_ Tr@yE= _(_?Tq* ! [‘J ldgk‘ T log lgowN]:_f
_D(.g.k) [a_ (ﬁ:{@ﬁ._] )
3 loghk  log (k/100)%*
_ DR(b.q. k) (K U Y DEbg k) K
T3 m_[logk_élogkﬂo_ﬂ_ 6 Iogk_'

Note that (4) and (5) impiy that =N, furthermore, the function s
log x

increasing for x‘:-x,,.]
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(7} and (9) yield that
D¥(b, g, k) K'»
6 log k
which implies (6) and the proof of Lemma 3 is completed.

3. In this section, we complete the proof of the theorem, by deriving
{3) from Lemma 3.

Assume that (1) and (2) hold for some arithmetic progressions
M (bl, 1 kl)t ] M (b’r! Gr, k’i“) '
Then (1) and (2) imply that

—=3kD(b. g k)

T 'y
Z Db, g, k) = Z | A, g, k)N Dy =
i i

T i _
= i[U A by, 4’:’k:)]n'/DA'if—5|@N| =[YN].

Thus by Lemma 3, and by using Cauchy’s inequality twice we obtain for
arge N that

TS k=T 3 ks T k,

i
i=1 k< 100 log? N k= 100 Jog® N
k; <1060 log? N ;- 10D log? N fe; = 100 log* N k= 10U JogE N
k
(o3 s )
Kp=100Tog2 v 1O0108* N )\, < 160T0g2 v

D (6 gk, 1 _ .
+[ > l][ > [ (b0 4 )]].___ P [ > kf]+
k;=100t0gz N ) Wiz 10000g2 ¥\ 18108 K; 100 log N ;=100 logt N

oz L g,k
A;:IOOlog-N Kz 100 log® N 324 log* N

Db, g, k:’)] +

¢

I

10b Iog-“ N &= 100 log® N

|
L —— 1 D*(b;, g, k;‘)] =
324 lOg' N k= 10%(@2 N ] [kl-a lﬂg;lngf N
1 2 ?
=— — 2 Db, g, k; +[ > Db, g, kr‘)] }:
324 10[:'{"‘ i[k‘ . lﬁ%ugzz N ( 9 )] = Z z

- 100 logt N
]

2. 394|0gzN[ZD(bqu")] W_(W NP -

H

lug2 N

19%
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(note that (1) implies that &;=N) which proves (3) and this completes the
proof of the theorem.

4. Finally, we note that the conjecture of Erpds could be derived also
from a result of S, Ucsivama (see [4]) but by using Ucnivama’s result,
we would obtain a slightly weaker Jower bound for the left hand side of (3)
than the one given in owr theorem. In fact, in [4], UcHivama gave an upper
bound for D (b, q, &) in terms of b, g and L. If we want te estimate D (b, g, &)
in terms of k solely then UcHivama's result yields

(10) D (b, g, k) = o (k)
only for
N
k=exple, log ]
log log N

{provided that (4) holds), while our estimate given in Lemnia 3 yields (10)
already for k=-¢, log® N. Accordingly, Ucinyama’s result wouald imply only

the lower bound N exp [ €, log vV ] for the left hand side of (3) (com-
loglog N
pare with the lower bownd N (log N)=2 given in our theorem).
Furthermore, Ucuiyama asserted in [4] that he gave a second proof of
an other conjecture of Exnis (see [t], Problem 18), saying that for k=-k,
we have

(1n Db g, ky--¢lk,

(The first proof was given by E, SzEMEREDI in [3].) This is a misunderstand-
ing; in fact, Erpds conjectured that if =4, () then (11} holds uniformly
for all b and ¢; in particular, also for ¢'s much greater than & (and Szeme-
rEDI proved this) while Ucnryama proved (L1) only for fixed b, ¢ and large
o, d.e, Tor b=kye, b, ). Thus it is still an open probiem to give a direct proof
for ([1) (without using SzEMEREDI'S celebrated theorem on the existence
of Jong arithmetic progressions in dense” sequences of integers), and to
sharpen (11) by showing that D(h, g, k)--k'* + or at least D(b, g. k)-Lk" <.
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1. The following result of Doos is classic: let (X, F,), =1, be a
non-negative submartingale, such that

sup £(X, log™ X, )= + o .

Tlien
E(sup X,,){ + oo .

More precisely, we have

(1) E (sup X} =- ¢

| (I-’}—Sl;:p E{X,log" Xn)) .

R. F. Gu~xpy has shown a sufficiently large class of non-negative mar-
tingales for which the preceding inequality cannot be sharpened. Let (X,
(#,} be a non-negative martingale satisfying the so called condition of Gundy:
there is a constant C =0 such that

(2} X, =CX,, n=l,
holds a.e. Then the condition

E (Slfap Xn) = + oo
implies

sup E(X,log™ X, )= + o=,
n

provided that E(X;log7 X }= 4 .
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Let ®(x), x=0, be an arbitrary Young-function and denote by ¥(x)
its conjugate Young-function. For the definition and the properties of these
we refer to [2]. E.g. the function @{x) = xlog® x, x=0, in inequality (1),
or its other form @(x) = (x+1) log (x+1}—x, x=0, are Young-functions
and the conjugate of the last one is

Yx)=ex—x—1.

The aiin of the present note is to generalize inequality {1) for general
Young-functions. Also we shall be able to isolate a class of Young-functions
¢ for which the so ohtained inequality cannot he sharpened in the same sense
as above.

2. Let £,,Z,, ... be non- negative random vanabies defmed on the
probability space (€2, 4, P) such that 2 Z.cL. with l|Z lel = K-+ oo,

I (P

Let further (7, c(F,< ... be an dl’bltl dly increasing sequence of o-fields of
events, Then for arbitrary fe{0, K~} we have
(3) E{(exp (tAL)) =(1—1K)™ 1,
where
A= lim A A4, = i E(Z)F), n=1.

1w de oo

This result is known (cf. e.g. P. A. MEYER [3], Theorem 46.). We shall use
it to prove the following

Lemma I, Let us suppose that

and let ¥(x) be an arbitrary Young-function. If for some f¢(0, K~1) the
Laplace-transform

I = e d W (i)
/
converges then
EM@(A)=(1—tK)y 1.
ProoF. We have

+ =

E(@(AL)) = f P(A.=2)d¥(5).

By the Markov inequality and by (3)
P(A.=2) = P(*~=e)=e P E("=)=e (1 — 1K) 1.
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2
=]
2]

Consequently,
E((A))y=(1-1K)'1.

This proves the assertion.
We use this lemma to prove the following

THEOREM 1. Lef (X, F), n=1, be a non-negative submariingale and
let @ and ¥ be conjugate Young-functions. If for some te(0, 1) the Laplace-

iransform
4 e

f et d W (7)

a

—
il

converges then
L(max Xk)<1 (X N+ -H1,

1=k=n
provided that E(®(X,)))< + .
Proor. Consider the events
A ={X, = X5} A =X <X X=X} k=2 -1

where X¥ = max X,. Then the random variables
l=isk

ZJ'EZZA;;i k=1,...,n,
have the property
2 Zy =1
Here y4, denotes the indicator of the event A;, k=1, ...,/ So the pre-

ceding lemma can be applied to the Young-function ¥.
Now by the submartingale property

E(X}) = 3 E{(Xxza)= D E (24, E(XalF)-
k=1 k=1
The conditional expectation being self-adjoint we get
n it
L= 3 KL EGalT) = E[X, 5 EGalF).
k=1 k=1

Apply now to the ringt-hand side the Young-inequality
y=® ()+¥(v), x=0, y=0,
to get

E(XH)=E{(P(X,) [ (Z E (ga,lF )]]
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By the result of the preceding lemma applied to the second termt on the right-
hand side we obtain

E(XHzE(@X,D+(1=-n""1.
This was to be proved.

3. For the non-negative martingales satisfying the condition of Gundy
and for a large class of Young-functions the inequality of the preceding asser-
tion cannat he sharpened. "l'o isolate this class of Young-functions we prove
the following assertion. For this purpose we use the notation

) =xp)-2 ().
Taeorem 2. Suppose tha!
() = 0@), Xt
If for the nen-negative martingale (X, F,.) econdifion (2) of Gundy holds then
E(@(X)=K|E(X,¢{(X))+E(XDH+1],

provided fhaf

E{(X g (X))= o .
Here K =0 is a constant depending only on & and ¢ denofes the “densify” fune-
Hon of &,
I Proor. Guxpy has shown that for the martingales satisfying (2) we
1ave

E(X,z (X =) =E(X, 7(X; =)+ CLE(3(XF=2).

Cf. e.g. J. NEvieu [2], Proposition IV—2—11. Here 2=0Q is an arbitrary
constant and y(A) denotes the indicator of the event A. Integrate this ine-
quality on (0, + e} with respect to the measure generated by the non-
decreasing and right-continuous function ¢(/). Using the theorem of Fubini
we get

E(Xnq (XN =E (X, ¢ (X)) 4+CE(:(X5).

since
X

f Adg(2) = 5(x).

[¥)
Note that ¢(x) increases and so
_ EX, g (XN =EX, s (X)2E(@(X)).
From this
E@ X )=E(X g X)+CEE (X))
Now if :(x) = O(x), x— + =, we can choose x,=0 such that
Hy=K'x
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hoid for x=x,. Here K’ is a finite positive constant which by the supposition
exists. Consequenily,

E(s (X)) st (x)+ K E(X})
and so
Lot E(@ (X)) =E (X, 9 (X)) +C&(x)+C K E(X¥).
e
K =max (I, C&(x,), CK').

Then with this K we finally obtain
E((I) (X,!))fK[E(qur. (Xi))'+E(X§)+l]'
The assertion is thus proved.
Remarks. Note that when @ (x) = xlog™ x then we trivially have
fx)=x, x=0.

Remark that if 77; = (0, ), then E(X,9(X,)) is a constant and in
this case we have
E(@(X.)=K(EMKNH+1),

with some constant K=10.

The condition &{x) = O(x), x—+ + <=, is also necessary in the sense
below. If for all non-negative submartingale (X,,,F,), n=1, where (7, =
= (8, 0), satisfying condition (2) of Gundy the inequality

E(@ (X )=K[EXH+1],

holds, where K =0 is a constant depending only on @, then necessarily we have
£ = 0(), Xt oo
In fact, using the inequality of Doob
IP(XE=N=E(X,71(XX=2), i=0,

and integrating this oen (0, + «) with respect to the measure generated by
the function (1)} we get

EGom=or(fre0m).

where 0<b=1 is a constant. Applying the Young-inequaiity to the right-
hand side and remarking that ¥ (¢ (x)) = £ (x) from this we deduce that

Eomy=s|£(e (2] EC )]

b

or, in other words

(1 ~b)E(§(X§))§bE[¢[);“]].
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——

The martingale [)ii, l_‘,(‘n], n=1, also satisfies condition (2} of Gundy. Con-

sequently, by our supposition
XE
(1 ﬂb)E(E(Xf)).f.bK[E [TJ+ 1].

This proves the assertiont by taking X, =x.
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The aim of this note is to provide an answer to a question raised by
ANDERsON and WIEGANDT [1] by constructing a regular class of semiprime
rings whose essential cover is not essentialiy closed.

An ideal 1 of a ring R is said to be essential if I A=0 for each
0= A< R. Given a class ./ of rings the class

M= (R|3Ta R with | essential in R and ¢ #)}

is calied the essenfial cover of M. YW M = ¥, then 4 is said to be essen-
tially closed. These ideas were studied in [2] where it is proved that if &
is a hereditary class of semiprime rings, then so also is #, and f, is essen-
tially closed. Tn [1] it is shown that if A/ is a class of semiprime rings and
regular (that is, if Re # and 0= A < R, then A has a non-zero image in )
rather than hereditary, then so is #,, but the authors comment that they
do not know of a regular class J/ of semiprime rings for which % is not
essentially closed. We construct such a class here.

Exampre. Let R=Z[x], A=x*R and M = x*Z4+x'R. Thus
M<cA<CR, hut MR, Since x* RC M it js clear that each of these exten-
sions is essential. Let ¢0 be the class of semiprime rings with nonzero
characteristic. Put J# = P U{M}. Thus # is a class of semiprime rings.

To see that M is regular suppose 0= N M. If NNpR =N for all
primes p then N€ 1y pR = 0. Thus there is a prime p for which NN pRcN.
Hence 0= N{/(N N pR)is of characteristic p. Further, if f, g€ N and fge NN pR,
then, by Gauss’ Lemma either f¢pR or g€ pR. Thus NN N pRYyePc M
and A is regular.

Now Ae #, and Re(AH,),. To complete the argument we show that
g M. 1f Re #,, then R is an essential extension of an ideal f¢_#. Since
R™ is torsion-free this means that f=M. Suppose ¢ : M~ 1 is a ring iso-
morphism. Then x*¢ = f and x*¢ = ¢ for some f, ge{. Hence f°>= g% and
from unique facterization in R, /= /* and g = It* for some ¢ R. Now fit =
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= el so bty L= meM. Therefore m* = g ' = gt =x% and so x* =
= =m£ Al which is a contradiction. Thus R-_4#, which is not essentially
closed.

Remarks. We note that a partial answer to the question under discus-
sion has been given in [3, Theorem 3] where it is shown that for a subdirectly
closed, regular class -4 of semiprime rings, . # = A, if and only if A4 (s
the semisimple class, of an hereditary radical.
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