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Then it is obvious that ¥ < w, and ¥ and W are lower and upper solutions of
(I). By Theorem 3 (n = 1), we also get that the problem (I) has a solution.

Using our Theorem 2 (n = 1), we also can get the results of CARL in [1].
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1. Definition: We call a set By (/N) a basis of order & (or an h-basis) for
the (integers of the) interval [1,N], if

{by+by+...+by | b; € By(N), 1<i<h}DI[I,N]
That is, the integer elements of the interval [1, N] can be represented as the

sum of (at most) h elements of By (V).

We are looking for the least possible number of elements of such a set
B, (N). Let us denote this number by Ag(N).

For the case h =2 it is easy to see that 2¢/N > Ay(N) > Vv2-vN.

It was shown in [3] that Ay(N)<+/3.6- V/N. In [2] I improved this result
to v/3.5-v/'N by a simple construction.

In this paper I shall give upper estimates for Ay (N) for any h.

2. We can clearly represent any number n < N as the sum of at most h
numbers if we consider the number system of base YN (or more precisely

* Research partially supported by the Hungarian National Foundation for Scientific Re-
search (OTKA) grant, No. T 4396.
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H'/N]). In this way we have an h-basis of the elements:
First subsequence: 1, 2, ,..., W

2

Second subsequence: \/h N, th N, ..., v" N
2 2 3
Third subsequence: W , 2W s eeey YN

-1 -1
h-th subsequence: \/h N 2\/’l N ,.. N

This basis consists of approximately h {/N elements. That is,
An(N)

YN

3. In this part we will use the rare basis given in {2]. For technical

reasons we will need the constant C = 1/3.5/2. Notice, that C < 1. Let
W be denoted by M. Let us consider first a rare 2-order basis B2(M2)
of the interval [I,Mz] having V335V MZ=2CM elements. We multiply the
elements of this basis by M 2 (to obtain the set M2 - B(M 2)) then by M?* (o
obtain the set M*4. Bz(Mz)), etc.

We replace the first two subsequences of the basis in Section 2 by
Bz(Mz); the next two subsequences by M?. Bz(Mz), etc.

If h is an odd number, we leave the last subsequence untouched.

It is easy to see, that we still have a basis of order h.

If h is even, then this basis consists of & /2 blocks, each containing 2C M
elements, i.e. our basis has hCM elements altogether. It means that

Ap(N)
YN

<h.

<hC<h,

since C < 1.

If h is odd, then this basis consists of (h — 1)/2 blocks, each containing
2CM elements, plus one block containing M elements, i.e. the basis has
[(h ~1)/2] -2CM + M elements in total. This gives

Ar(N)
YN
a slightly weaker result than for even values of h.

4. One can feel that the above model is not well balanced for odd values
of h; the last block is relatively too “large” compared to the others. Therefore

<Ch-D+1,
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we keep just the first CM elements of the last block, i.e. we omit the
last (1 — C)M elements. This way we obtain a basis for the interval N' =
= CMM"! (instead of N = M") and this basis contains hC M elements in
total. This yields

An(N') _ hC
Since C < 1, this is a “better” (that is smaller) constant than the one we

got for odd orders in Section 3, but it is still weaker than the one we have for
even values of h.

We can summarize our results in the following

THEOREM.

R S\ AS, ifh is odd.

Ap(N) {hC, if h is even,
e

where C =+/3.5/2.

5. Unfortunately, 1 do not see possibilities of further improvement by
“assembling” the h-basis from 2-basis blocks more cleverly.
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ON PAL INTERPOLATION
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L. G. PAL introduced the following modification of the Hermite~Fejér
interpolation. Let

-0 <x",n <... <x1’n < 400

be a finite system of distinct nodal points forn =1, 2, ... and

n n
PoxY omm
wn(x) == H(x - xi,n)a Wy(x) =n- H(X - xitn)'

i=] i=1
It is obvious that

Xy <Xyl <oee <XLp <Xp g
Determine a polynomial R, of lowest possible degree satisfying the condi-
tions

Ry(x;in)=yin (i=1 R,(x} )=y, (=1 -1
n(xz,n)—yz,n (l - 9“‘:")’ n(xi,n)—yl,n (l =1,...,n )’

where y; ,, and arbitrarily real numbers.

PAL [7} proved that if a=x; , (i =1,...,n; n=1,2,...), then there exists
a unique polynomial R, of degree < 2n — 1 satisfying the requirements and
R, (a)=0. He has also given the explicit form of this polynomial. In [1] SzILI
proved:

If the interpolated function f : R — R is continuously differentiable,

f(0)=0,
lim x2re—xz/2f(x)=0(r=0,1,...) and lim f'(x)e*x2/2=0,

[x{—ro0 jx|—o0
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furthermore
Yip =f i) (=120, yi,=f&') (=12..,n-1,

where x; , are the roots of the Hermite polynomials, then the sequence of the
interpolation polynomials R, (n =2, 4, 6, ...) satisfy the following estimate:

2 1
e " lf(x) = Ry(x)| =0 (W (f’, ﬁ) 10gn> s
which holds on the whole real line, where y > 1 and O does not depend on x;
w is the so called Freud modulus of continuity, which is defined for a function
g:R—Rby

w(g,0) = sup ~(x+1)?/2 —x*/2 T(éx)exz/zg(x)

0<t<é

e glx+t)—e g(x)|i +

The aim of this paper is to prove a sharper estimate.
The polynomials R,, we can give in the explicit form (see: [1] Theorem 1)

n n-1
Ry (x)= Z)’i,n Ajn (x)+ Zy'!v" B; , (x)
i=1 i=l

and
n 2
S [ HO
R, (0) = —2§Yz,n {Hr;(xi,n)] ’
where
z
_ He ) [, Fite) |
Al,n (x) = m . l,’,,(X)+2n . H'g(xi'n) O/ll,n(t)dt -2 [I-L;(xl.n) ?
li,n(x) = Fn) (i=12,...,n)

Hy (xi n Yx — X n)
(the Lagrenge fundamental polynomials corresponding to the nodal points
xi,n )9

2
H,(x . .
Bi’"(x)= Hn'('-i*)) : li’n(t)dt, (l = 1,2,...,n — 1),
in o
!
lin (o) = By ) (i=12,...,n=1),

y
Hy (xitn e - xitn )

(the Lagrenge fundamental polynomials corresponding to the nodal points
x* ).
i,n
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THEOREM. If the interpolated function f : R — R is continuously differ-
entiable

(1) lim x¥-e*fx)=0 (r=0,12..) and'lllm Flxe~* 12 =0

fx[—+o0 x[—o0

furthermore, f(0) =0,
(2) Yin =f(xi,n) (i= 1,2,...,71), yi,,n =f,(xitn) (i= 1,2,...,'1 - 1),

then the sequence of the above interpolation polynomials R, (n =2, 4,6, ...)
satisty the following estimate

2
3) e |f(x) — Ry(x)| = O(1)w ( ; )+O(1)
n \/— \/__
which holds on the whole real line and O(1) is independent on x and n.
For the proof we need some lemmas.

LEMMA 1. Let n be even, then

n 2 2
4) S ein/? |40 = O()e* Vi,
i=1
PROOF. TakKing into account [1], [4], it is enough to estimate
n ex,?’"/Z
, .
©) | ) E |H,4<x,-,n)f Hin
2./ I
e 1n
6 H, i
© Ol Z H i) / fin (]
and
2
(M) H2<x>2 il
'Hn(xl n)|2

First estimate (5). We know ([6])
2

1
® Z H ,,,>|2 TR
Using this we obtam
n e 1n/2
9) lin )] <

=1 IHrll(xi,n )|
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n 1 172 no o, 12
P . x",’l R 2 -
(Smmon) (Bt

where we used (see e.g. [3], [6])
noo2
(10) S efin 2 x)=0Me”’  (x €R),

Using [5], p.700 table, we obtain from (5)

! 2/2
11 H, in
an | (")'ZlHn(.n)l' )] =
e* /2
= O(1) s 1 | Hy 1 (2] = 0<1)e"2n‘1/,'f2.

Now estimate (6). We know (see [2], 15.3.6 and [9], Lemma 1)

2 _
|H i | < €502 /2T 2y ).

Using this we obtain
X |H ( )i X
X 1/2
| [ intoe| =00/ ZHE ;‘m/ G| [ i)
0 0

In Lemma 3 we will estimate a similar expression and we obtain

2
" Xinl?. | Hy ()|
IHI:(xi,n)l

i=1

x 2
[Hn @)l = 172, ./1. - 0(°-
=0(1) \/.2"_,2;% O%izn) J in(dt) = O —=.
Therefore from (6)
' n ex,-z’n/2 x 2
(12) n-lHn<x)f§m- 0/ i n(0)dt| = O(1)* - /A,

At last using (8) we obtain from (7)

e¥in/? H, 1
13  HXx)- Z(H( = (1)(\/(_’;)) 0(1)ex2.m.

Hence (4) is proved.
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LEMMA 2. Letn be an arbitrary nonnegative integer and @n(x; n) =X n —
— Xj41,n (certainly x5 > x3 0 > ... > xpn). Then the following estimate holds

| Ha )| < 50/ a1 - 1T 2ty =1,2,0n - 1),

where a, X by means that |ay| = O(bp) and |by| = O(ay).
PROOF. The x, are the roots of H,_; since Hy(x)=2n-H,_,(x),
therefore xi‘:n =X; n—1- Using [2], (5.5.8) we obtain
IHn(xitn)I = |Hn(xi,n—l)| =2n-1)- lHn-—Z(xi,n—l)l-
Hence
lHn(x,'t,,)l = IH,:_I(xi,n—l)'-
But we know (see [2], 15.3.6 and [9], Lemma 1)
|H. (xi | % € Xinl2 f3l . o 12 (x,,,,) G=1,...,n).
Lemma 2 is proved.
LEMMA 3. If n is even then
n »2 2
(14) Y/t B a]=0e*”  (x€R),
i=1
where O(1) independent on x and n.

PROOF. Without loss of generality we may assume that x > 0. Using
Lemma 2 'we obtain

n-—1 2 -" x

3 Hin /2 | B atx) = | Hu)l- Z THn Gl / a0t} =

i=] 0
x

H,
=O(1)\/2lm(xf)lT— Z 1/2(xtn l) /tn—l(t)dt .
0
Here
n—1 X

1/2
Z wn{_[(xi,n—l)‘
i=1
Wi n—11224/log(n=T)
n-1

2
_ Z -2 /2 12
= e “in l/ wn 1(xi,n—1)'
i=]
Ixi n —1122+/log(n~ 1)

/li,n—l(t)dt =

0

X

2
/exiy"—l/z-li,,,_l(t)dt =
0
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p-1/12 x N2 s 1/2
=0()— /(21) -(Ze“iﬂ-hlfn_l(t)dt) dt =
0 ‘ ,
X

x2/2

1 e
r/2 _
19/12/ dt =0~ n19/12 1+x°
0

=0(1)

where we used (p:/_zl(x,-’,,_l) = O(l)n"l/12 (i=1,...,n—1) and (10).

Hence
n_l *2 2
(15) > S BL@I=
|Jci,,l 12 ;/og(n-—l)
2
_ | Hn ()] 1 &2 2 1
=0 2in — 1D pl9/12 14x =0 n4/3’

where we used e—* /2 x Y H,@)l = OVl n =14, (x| > 1) (see [2],
(8.91.8)).

Furthermore

X

/ lin—1(0)dt| =

0

n-1

Z ‘P:/_zlui,n—l)'

i=1
lxi,n -1 |<2+/log(n—1)

n—1 X
=0W—7 /4 > / li 101

i=1
lx,-’n_l |<2+/log(n =T} 0

Using

n-—1

> lip—10)] = 0(1)e* 2/ (x| > n'/4)
i=1
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(see [4], (19)) we obtain

n-1 X Xn-1 ex2/2
> /li,n—l(’)d’ < / > i1t} = O x 2 V.
i=1 0 0 i=0
Ixi,n—l |<2\/login—1)
Hence
(16) )
n—1 IHn(x) 1 ex /2 x2

2

Y i Baml=00)
i=1

|xi,"_l|<2\/iog(n—l)

for all x > \/n.
Using

V=1 nl/t 1+x =0(le

Y lhaa@l=00e D x|<va

|x'"xi,n—l|21

(see [4], (17)) we obtain

y ex2/2
> i1 (®)dt] = O T—.
+x
Ix—x;n_1121]p
Hence
an
n—1 2
212 _ |Ha(x)] 1 e7/2 X2
Z} e l% 1Bl = O ey = - 75 = O(De
=
lxi,u_1|<2\/iog(n—l)
[x~xin_1|21
forall 0 < x < /n.
We need an estimate for
n-—1 2
(18) Y Sl B,
i=]

Ix,-,,, ~11<24/log(n—-1)

Px=x; 1121
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Obviously
n-1
(19) Z € ”' ]Bln(x)' =
i=1
|%; n—11<2/log(n—1)
[x—x;p 1121
-1 x
_ _|Hu)| 1 X
SV pl/a’ 2 /’i'n—l(‘)d‘ :
i=1 0
[%in—11<2¢/log(n—1)
[x=xip_1]21
Here
T H
t
/ li 1 (1)t = / ho1®)
’ 1(x1n 1) —Xin— 1
0
1 1 Hn——l(t) dt
e ln 1/2 V2n(”“1)' 1/4 t’_xi,n—-l .
Thus
n—1 )
(20) \2 e /2, | By ()] =
i=1
I%in—11<2¢/log(n—1)
lx“xi,n—ll<1
2
_ | Ha0) f ¢ Fin-1/2 /H,, 0,
RVZIrY — Y1) | t—xi,_ -

|x,-’,l_| | <24 /iog(n— 1)

[x—xi n_1l<1

We investigate the cases:
1. -1 Sx,-’,,_l <0,
2. Xin—17 0,
3.0 <x,',,,_l < 1,

4.1 <Xin-1< 2\/10—g_(—n—:T5
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1. =1 < x; -1 <0. Integrating by parts we obtain

@1 / Hy,_,(1) dt=—21—.H,,(x)-————1~————-

[ —Xin-1 n X = Xin-1
1 1 1] 1
- H,(0) ——————+— [ Hy(t)  ————d.
2n n(0) O—X,',,,_l 2n b/ n(t) (t—x,-’,,__l)z
From this we obtain
X
/H 0 ——-—l—-—dt"
n-l t—Xin-1 -
0
le“/2 2npnt le2/2 2"'n
=0(1 o)—- t=
0y S VRO S /«_x.,, 7
& /2 \/2_"'—
—O(l) 7 .
Therefore
—x2 x
Z [4 X"n_1/2 . / Hn—l(’) dt| =
=1 V2 (n - 1! t—x,"n_l
i= 0
»le,-',,__l<0
P —x; pql<1
ex2/2 n—1 ) ” 2
=O(l)';,_177t" E e Fim-1/ = 0Q)e* /2. q1/4,
i=]
_lsxi,n-l<0
Px—x; n_1l<l
Hence
— 2/ | Hp ()]
@ 3 B )= O X 2 = O1)et
i=] 2in!
—15x,',,,_1<0

fx=x; p_1]<1
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2. xj p—1 =0. In this case

n-1

@ Y B x

i=1

Xin-1=0
Ix—x; p—1<1
-1 x
— _ |Ha(x)| 1 "
h 2"(n - 1! .n1/4 Z /li,n—l(’)d! =
=1 0
xi,n—l=0
'x"xin—1|<l

H,
=0<1>\/2|T(n(—i)|—1~ 1/4/ Z en=17 Jyyldt =

xl,’l—l—o
Ix—-xi’,,_l|<l

/ \ 1/2

X n—1

- |Hax)] 1 > x,_

=0 2n(nn—1)!n1/4/ — € L lln 10 dt=
0 i=

Xjn-i=0

\e—xi nil<1 /

lHn(x)l 1 'ex2/2=o(1)ex2

V2iin— 1) pl/a

=0(1)

3. 0<xp,-) <1 We distinguish 3 cases: a) x < x;,_} — %

b) X1 — % <x <Xjp-1 +§;, C) X 2 Xipn-1 +%, where ¢y >0 is a
small absolute constant such that x, /5 o _; — % >0.

a)x <xjp_1— 31- > 0. In this case from (21)

1 x/2 /2 x/2 /In g
/H,,(t) =00 £ —— VA= Oy = ¢ o ven
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Therefore

n-— 2
Z [4 o, l/ . / 1(1) =
€ V2 — 1! t—Xjn_1
i=1 0
0<xjp—1<1
lx-—xi,,,_1|<l

xsxi,n-l—%
2 n—1
& /2 ) /2 3
- — n-1714_— X /2. 1/4
_O(l)nl/‘i E e 7t O(l)e n*’".
i=]

0<x,",,_‘§l
fx=x;ip_1l<!

c
XSXi,n—r'yl;;

Hence
n-—-1
x2/ | Hn ()] 1/4 _ x?
@h Y Bl = 0T e 2 = Oe
i=1
0<xi,n—ls1

!x”‘xi,n—lkl
. c
xixi,n-—l“j:

b)) xipo1— 'f/'% Sx<Xxp+ % In this case

c
Xin-1"""Jn

X
1
/H,,_l(t)-———-—-—————dt: / + / = L +h.
t——x,",,_l . .
0 0 xi,n-—l‘“ﬁ;

Here

= 0(1)e("""—1“§;)2/2. Vv2in!

n3f4 -’

Now we estimate I. Obviously

X
/ Hy_ (1) — Hn—«l(xi,n-—l)dt

t—Xipn-1

/ H, (1) ——-—]—-—dt‘

—Xin-1

c
xt,n l_ xi'"“l_d-n
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Since H,',(x) = 2n - H,_{(x), therefore using the mean-value theorem we

ol i - T

obtain
2y V20!
- /2,
12—0(1)ex n3/4 .
Hence
/Hn 10— di = Oe* 2 V20!
1374
Therefore
(25)
n—1 * /2 x2
3 einl? 1Byl = oy FRE €7 o)

0<xjp_ <1
lx"xi,n-ll(l

c ¢
xi,n-—l_j;sxsxi,n-l"'jn'

C)C 22X, 1+\/_ In this case

X c
in—1 n X

x
1
/Hn__l(t)'"——dt= / + / =1 11+I2.
L= Xjn_1|
0 0 xi,n—l_%

Here

0(1) (111 1= %)2/2\/W

n3fe’
_ x2/2 A% 2Mn!
L =0()e Y7o
Therefore (similarly as in case a))
n~—1 2 2
(26) Y. efinl? B )] = 0()e*

O0<x;p <1
Ix_xi,n—ll<1

¢
>x:
x_x,,n_l+j;
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Hence from (24)-26)
n—1i 2
@n Y 1B 00l = Ot

0<x; <1
[x—=xj p_gl<t

4.1 <x -1 <2yloglx - 1).

We distinguish 3 cases: a) x; p_; — 1 <x < x;yp — T b) x;po1 -
— Jr Sx S X1+ e ©) Xl =~ e SX <Xy +
ayxi 1 —l<x<x - \_}';T In this case
x Xin—1—1
1
/Hn—l(f)' / / =5 +h,
r"xi,n—l

0 Xin—- i—1

Here
I = O(l)e(xi,n_l—l)z/Z L v2in!
n
_ x2/2 v2"n!
L =0(l)e S
Hence
NoITY
/H,,_l(t) dr—O(l)e" 22, 23 -y
/4
Therefore (similarly as in 3.a))
- 1?2/2 X2

(28) Z e"in/= | B; y(x)] = O(1)e

I<x; S 1<7\/log(n—l)

x ~Xjin—- i<l
1
Xip—~l<xSxip -
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b) Xjn—1— ﬁ <x <Xjp-g +ﬁ. In this case

X Xi,n—l_‘\'/l"',; X
1
H —_——— = = .
/ n_l(t)t"xi,n—ldt / + / L+
0 0 xi,n—l_vl,.'l
Here
_ (Xi,n-n /2 Vs"n!
—O(l)e ) 3/4 ’
_ x2/2 V2%n!
L =01)e . FETZR
Hence
V2T
/H,. L o(ne** /2. 23"‘.
/4
Therefore
n—1 2
(29) Z einl? . |B, (0] = O() =

\/_'
l<x;p_ 1<2\/log(n 1)

IX-—X,,n ]l(l
1 1
Fip— |~ R SE St
C) Xjp1+ = \/_ <x <x;,-1+]1. In this case

t

x Yin-1* 8 X
1
/Hn_l(t)———-——dt= / + / = 11+12.
= Xin-1
0 0

xi,n—l"'#

Here

| 2
_ Xin—1t = /2 v2"n!
11-0(1)e( )~ S
B =0 /2. Y2

n3/4 -’
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Therefore

(30) Z ofin 2 |Bin(x)) = 0(1),2)‘2
i=]

l<xi,n_1<2\/log(n—1)

[x—xip_ <l
Xin~1— 71; <x<xjp 1+71,T
Hence from (28)-(29)

31) S i/ | By (x)| = O
i=1

l<x,-,,,__l<2,/log(n-1)

x _xi,n~l|<l

From (22), (23), (27), (31) we obtain an estimate of (18),

n-1 *2
(32) S B =0
i=]

X p—11<2¢/log(n—1)

[x—=x; p—yl<1
From (15), (32) follows the lemma.

PROOF OF THE THEOREM. From lemmas we get (see [1], (22), (23))

1 (x) = Ra(x)] =

_ 1 —x2 |Ha)| HZ(0)
= O(l)w (f ﬁ) +0Me™ | 55| n<0>+2an<x,,n> e
_ ) 1 —x? | Ha(x) 1

= O(L)w (f ﬁ) +0Me™ - | 7| Ipa (@) + OC) f

_ ;1 1

= O(l)w (f 75) + 0(1)_\/5'

REMARK. If e=%" - [f(x) = Ra(x)| = 0n(1), then for x := 0, we obtain
£ (0) = Ru(0)] =, (1), but Ry(0) = 0( f) therefore £(0) = 0.
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NOTE ON ADDITIVE FUNCTIONS SATISFYING SOME
CONGRUENCE PROPERTIES IIL
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Let A and 4* denote the set of all integer-valued additive and completely
additive functions, respectively.

K. KOVACS (5] proved the following
THEOREM A. Iff € 4* and for some integers a > 1, b, ¢ the congruence
flan+b)=c (modn)
holds for all n € N, then
fn)=0 for all (n,a)=1.

In [1] we achieved the same result for f € 4 in the case a = 1. After this
in [2] we proved the following generalization of the above result:

THEOREM B. Let A > 0, B and C be integers. If f € A satisfies the
condition

f(An+B)=C (modn) forall n>max (0,—%) ,
then f(n) =0 for all n € N which are coprime to A.
Using the results of [3] and [4] we have:

THEOREM C. Let A>0, B> 0 and C be integers. If F and G € A* such
that
F(An+B)=Cn)+C (modn)
holds for alln € N, then G=0 and F(n) =0 for alln € N which are coprime
{0 A.

In the present paper we improve the above results by proving the follow-
ing:
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THEOREM. Let A>0, B and C be integers. If F € 4 and G € A* satisfy
the condition

4y F(An+B)=G(n)+C (modn)
for all n > max (0, - %) , then:

For B#0, G=0 and F(n) =0 for all n € N which are coprime to A.
For B=0, F(A)=C and F(n)= G(n) for all n € N which are coprime to
A.

The proof of our theorem is based on the following result:
LEMMA. If g € 4* satisfies the congruence
¥)) gin+1)=g(m) (modn) forall néeN,
then g =0.
PROOF OF THE LEMMA. The lemma follows from Theorem C, but here

we give another proof. First we show that from (2) it follows that for all n,
keN,

3) gin+k)=gn) (modn).
For k =1, it is the condition of the lemma. We proceed by induction. If (3)
holds for k, then
gn+k)+gn+D=gnn+k+1)+k)
implies that
gn)+gn)=gn(n+k+1)) (modn)
i.e.
gn+k+1)=gnm) (modn).
Thus, (3) is proved.
Let p be any fixed positive integer. Applying (3) with k = (@ — )n we
have
gpn)=g(n) (modn)
which implies
g(p)=0 (modn) forall neN.
Thus, we have g(p) =0 which completes the proof of the lemma.
PROOF OF THE THEOREM. First we consider the case B > 0. Assume that
(1) holds for all n > ny where ny = max (O, —%). Then replacing n by 3B%,
we have

@) F(ABk +1)= G(k)+C, (modk),



NOTE ON ADDITIVE FUNCTIONS 265

where C = G(3)+2G(B) — F(B). Since
(3ABm +1,3ABm)? —3ABm + 1) -

=BABm+1,3ABm+1)(3ABm —2)+3)=1
holds for all m, replacing k by 32A42B%m3 in (4) yields

(5) FGABm+1) +F<32A232m2 ~3ABm + 1) =3G(m)+C, (modm),
where Cy = G (32A2B2) +C.
On the other hand, the substitution k = 3ABm2 — m in (4) provides
F (32A2B2m2 —3ABm+ 1) =F (3AB(3ABm2 —m)+ 1) =

®) = GQBABm - 1)+ Gm)+ C; (mod m).
Thus, the congruences (4), (5) and (6) yield
@) GBABm - 1)= G(m)+C;  (mod m),

where C; = C; — 2C). Replacing m by 3ABm3 in (7) we have
0(32A2B2m2 - 1) = GBABm)+C; (mod m).
This combined with (7) implies

® GBABm+1)= G(m)+ G3AB) (mod m).
We shall deduce from (8) that
9 GBABm+i)= G(m)+ GB3AB) (modm)

holds for all m, i ¢ N.
The proof of (9) is similar to the proof of the Lemma. Using that
(BABm +1)3ABm+k)=3ABm(3ABm+k+1)+k
and the previous steps of the induction, we have
26(m)+2GQBAB)= GBABm+1)+ G3ABm+k)=
=GBABmQBABm+k+1)+k)=
= G(m)+ GBABm+k+1)+ G(3AB) (modm).
The choice i =3AB in (9) yields
GBABm +2AB)= G(m)+ GBAB) (modm).

Thus, G(m +1) = G(m) (mod m). By the lemma then & = 0. Therefore, by
(1) we have

F(An+B)=C (modn).
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We can apply Theorem B to get F(n) =0 for all (n,A)=1, if B> 0.
For B < 0, we can prove the Theorem in the same way as above using

| B] instead of B whenever we want to multiply by B. This proves the claim
for B=0.

Finally, we consider the case when B = 0. Assume that F, & € 4 and
integers A > 0, C satisfy

(10) F(An)= G(n)+C (modn)
for all n € N.

Let k be a positive integer which is coprime to A. Applying (10) with
n=km, we have

F(Akm) = G(km)+ C (mod m),
which implies that
11 F(Am)+ F(k) = G(m)+ Gk)+C (modm)
for all m € N, (m,k) =1. It follows from (10) and (11) that
Fk)= Gk) (modm) forall meN, (mk)=1.
This implies that
12) F(k)=G(k) forall keN, (k,A)=1.
Using (10) and (12) we obtain that
F(A)=C (modn)

for all n € N, (n, A) = 1. Consequently F(A) = C, which completes the proof
of our Theorem.
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Introduction

This paper contains some results concerning earlier work of the author*.
In point 1° we extend the result [7] on the independent oscillations of the
points of a vibrating membrane to the case of string. We prove that the
independence holds only for short time intervals (contrarily to the case of
membranes). In 2° we investigate the independence of the motion of points
in a circular membrane, if the origin is one of these points. The answer is
similar: independence holds only for limited time intervals, namely if and
only if T < 2. Point 3° contains a description of those situations when the set
of all movement states reachable in time T is strictly increasing in T. In Point
4° we disprove the possibility of independent motions of a vibrating beam.
Finally 5° extends the controllability properties of a circular membrane in the
spaces #H, = W, & W,, W, =D ((1 - A)’/2>, r< '“’]2 (proved in [8]) to the
case r = — %

1° Consider the string equation

-

d-y(x,1 d 3 ot

()(-’: )=__.<p(x)__y._§_x__) s D<x<]’ D<t<T
gt~ ax

1 plx) ax

with density p(x) and modulus of elasticity p(x), p, 0 € C20,1).

* These are solutions of problems and conjectures posed by professors J.-L. L10NS, L. Si-

MON and R. KERSNER, the opponents of my dissertation.



268 1. JOO

Let y(0,t)=y(1,¢)=0 (or we can prescribe any strongly regular boundary
conditions). Using an appropriate substitution in variable x in y we get a new
function u(x,t) satisfying

1
() urr=ugr+q(x)-u, O<x<lil, O0<t<T, l=/\/f—?, q € CI0,1]
0

(see HORVATH [1)).

THEOREM 1. Let xy, ..., xn € (0,1) be different numbers and

Au(t) =(x),1),...,u(xpn,1)).

Then there exists T >0 depending only on N such that the functions Au run
over a dense subset of C*®(0, T;CN), where u muns over the C%-solutions of
(2).

Remark that since the dependence in ¢ remains unchanged, the same
Theorem holds also for system (1), too.

PROOF. Consider the eigenvalue problem.
(*) V,’,I+(IV;1 +Anvn =0, vn(0)=vy(1)=0
(see [1] for more general boundary conditions). It is known from Neumark’s

monography [2] that there exists a complete orthogonal system (vy) satisfying
(¥) and

3) vn(x)=sinﬂx+0(l>, n=f£+o(_l_)_
l n 1 n

Define A={A, : n=12,...,}. Clearly every finite sum
) u(x,t)=Zv,,(x) (aneim+ﬂne"i A"’)
satisfies (2) and u(0,t) =u(l/,t) =0. So we consider the system

) vn(x)

eMy={ VIl o) s
vn(XN)

It is enough to show that e(A) contains a subsystem, complete in
C®0O,T;CM)if T>0is sufficiently small.

LEMMA 1. The vectors
sin 4 x)

: ), 1<n<3N-2, spanCN
sin Yxn
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PROOF. Let fBysin%fx) +...+fnsin%Fxny =0, 1<n <3N -2. We
have to show that 8; = 0 for all i. The equalities imply that 8; T(x}) +...
..+BNT(xn) =0 for every impair trigonometric polynomial of period 2/

and of degree < 3N — 2. If we set T(x) =sin%* .];[.(sinz’—'fi smzizﬁ),
j=i
we get B; = 0 unless there exists j with x] =] —x;. In that case let T(x) =
=sin%- [] (sm2 T cos - - sin” —rL cos ) which implies again §; =0. §
jri
Fix a basis {ey,...,en} out of the vectors of Lemma 1. Then we have

LEMMA 2. For every € > 0 and for every sufficiently large M > 0 the

system
sin 4 x;
eo(A)={eii" ni :nZl}

sin ff xn
contains a subsystem of its elements indexed by n =ny ; such that
a) ngj =M -k+0(1)

U T
sin——x| j=1L...,N; k=1,.
b) : - € <&
sin ﬁxN
where the implicit constant in O(1) depend only on €.

PROOF. It is based on the Kronecker theorem on simultaneous diophanite

. . T

approximation (see e.g. Cassels [3]). Let ¢; = (sin ﬂ;lxl,...,sin "—-l;lxN) ,

then for n=ny ; we require n =M -k +O(1), |||nx; —njx;||| <e (i=1,...,N).

Such an »n exists by [3]. ]
LEMMA 3. The system e(A) contains a Riesz basis in L, (0 :CN )

PROOF. The system
k
e*(A)={ej-eXT' : keN, 1<j < N}

is Riesz basis in L,(0,2! :CN). If the vectors € are moved at a distance <&
with sufficiently small ¢ > O then their basis properly remains unchanged,
hence
V"k i (xl) L
sk
e1(A) = : eTT! i keN,1<j<N

V"k,j (xN)
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is also a Riesz basis. Since k = %"d— +0 (ﬁ) by Lemma 2 a), we can use a

stability theorem like that of Duffin and Eachus stating that any sufficiently
small shift of the exponents (within an error bound £) preserves Riesz basis
property, see HORVATH [4] Lemma 3 or JOO [5]

Vay j (X1) _—
er(A) = : U keN, 1< <N
Vi ;XN
is Riesz basis in L,(0,21;CN). By the same argument
Vi ; (x1)
e3(A) = kJ; ei"\/l‘n;‘ k€N, 1<j<N
Vnkj(xN)
is also Riesz basis over (0,2]) i.e. e(A) contains a Riesz basis in
Ly (O, %;CN ) Lemma 3 is proved. i

LEMMA 4. Let s € N be arbitrary. If M is sufficiently large, the system
e(A) contains a Riesz basis in the Soboleff space H* (O, %;CN ) Here M
is Independent of s

PROOF. Consider the system eg(A) constructed in Lemma 3. We can
construct a system H C e(A) \ e3(A),

H={v]~ei"f' cj=1...,5N}
with the properties

a) H is linearly independent.
b) If lim H resp. lim Hy denotes the linear hull of H resp.

Vnk‘]-(xl) @
H = : et D 1<j<N

— - y
VnkJ- (xN)
then
limH Nlim H = {0}.
c) The vectors v, ..., v¢ny form s bases in CN. This can be done: if s
sequences of N members ny j, 1 <j < N, kg <k <kg+s — 1 are constructed

as in Lemma 2 (with M +% instead of M) then c¢) follows from Lemma 2 b),
a) follows from Lemma 2 a) and b); finally b) is a consequence of the fact
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that, by construction, the exponents of H and Hj the different. Now we refer
to Proposition 2 of JOO [11] which states that the above assumptions a), b),

c¢) imply that the unified system H U LkJHk is Riesz basis in H* <0,%§;CN)

as we asserted. [ ]

PROOF OF THEOREM 1. By Lemma 4, e(A) is complete in H* <O, % ; CN)
for all s € N if M is sufficiently large. This implies also the completeness in
c> (0, %;CN ) which completes the proof. |

REMARK 1. In the above Theorem only the values T < 2/ can occur.
Indeed, if for some T the Theorem holds then {ei"\/’E tn=12,..}1is
complete in L»(0,T). On the other hand v, = *F+ O <%) implies by the
above mentioned Lemma 3 of [4] that {eii T n< ng}U{eT Vil : n>ny}
is Riesz basis in L»(0,2/). From Lemma 7 of JOO [11] we can shift the

remaining finitely many exponents from % to v/, hence {1,e*! Vant .oy =
=1,2,...} is Riesz basis in [,(0,2!). Consequently in [,(0,T), T > 2l this
system has infinite-dimensional deficiency: it cannot be complete.

2° REMARK 2. In the statement of the theorem of JOO [7] on the indepen-
dent motions of different points of a circular membrane the origin is excluded.
That theorem states that if € is the unit disk 0# Py,..., Py € € then taking
the set U of all solutions u(t,x,y) € C®¥(R x Q)N C(R x Q) of the problem
up =40y on R xQ, u=0o0nR xdQ, the mapping A: U — C>®(R,CN)

Au =, P),...,u(-, PN))
has dense range in C°(R,CN). If P; =(0,0) then the mapping A: U —
~c=((-3.5)cv),

Au =W, P),...,u, PN))
has dense range in C*° if T <2 (and for no larger T). Indeed, since r; =0,
we have J,, (\lf,"')rl) =0 unless m =0. Hence

u(t,0,0) = Z (ake’lk t+bke-'}‘k 1) .

On the other hand, the distribution of the zeros Af{O) of Jy is linear: Aio) =kn -

ZL0 ( 1 C . iil(o)l R A :
—~Z +O| 1 )- Consequently the system { e~k * : k=1,2,... ¢ is complete
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in Ly (— 77[-, %) only for T < 2. This means that for T > 2 the range set of A
is not dense even in L;. For T < 2 we can argue as follows. In the set

i2(m) (m)
e(A)={e,,,,kei"k ke T m=0,1,.. k=1,2,...}

(investigated in [7]) we use the members of index m = Q to approximate
A

the first coordinate function f; of | : |; this gives an approximation of
N

fi
g_2 . The members of indices m > 1 of e(A) are then used to approximate
\en

0
fi—&

\fN“:gN

REMARK 3. In the above Remark and in JOO [7] only the density of the
range of A is proved. In fact, A is onto in the following sense. Introduce the
function spaces W, and ¥, as in JOO [8]. Then we have the following

, as described in [7]. So A has dense range indeed for T < 2. §

THEOREM 2. Let r > 0 be an integer. Suppose that the origin doesn’t
occur, P;#0Vi. Then for every function F€ H" (0, T; CN)Y, T > 0 there exists
an initial state (ug,uy) € ¥, (ug(x) =u(0,x), u;(x) = u,’((O,x)) such that

Au=F on (0,7).
Here 37 =W, is the usual Soboleff space.

A similar statement has been proved in AVDONIN-IVANOV-JOO [9] for
rectangular membranes and in JOO [19] for the Dirichlet condition in the
square membrane. In case of Newmann condition the proof of [19] can be
copied step by step so we give here only an outline of the proof. The idea is
that the system e(A) contains a Riesz basis in H" (0, T; cN ) for every natural
number r. In case r = this can be shown as follows. It is proved in [7] that
there exists a system b= 2o(A) U D the ég(A) C eg(A) and @ is finite such that
& is Riesz basis in Ly(0, T,CY), so &5(A) has finite codimension. Since e(A)
is complete by [7], we can join (step by step) appropriate elements of ¢(A) to
ép(A) to obtain bases with smaller and smaller codimension. In finitely many
steps we get a Riesz basis whose elements belong to e(A). This proves the
case r =0 because the coefficients of the sums defining ug and u; belong to .
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In case r > 0 we join finitely many elements of e(A) to the above con-
structed basis to obtain a Riesz basis in H" (0, T;CN). This can be done by
Proposition 2 of {§], already mentioned in the proof of Lemma 4 above. The
same procedure works also for the case of string. If the origin is allowed i.e.
P; =0 then using the ideas of Remark 2 above we see that the statement of
Theorem 2 remains true only for T < 2.

REMARK 4. It remained open the explicit determination pf the optimal
time T < 2 for which N points of the string can obtain arbitrary movements
states and how this time depend on the number N of points considered.

3° REMARK 5. In several papers the authors investigated the growth
properties of the reachability set associated to a hyperbolic equation, see e.g.
{81, [1], [9]. A formal setting of the problem is the following one. Denote
(pn) C L0, T; cN ) a system of vector exponentials and let

R ={((fonlr,) : f€LAOTiCY))

be the reachability set (more precisely, the moment space associated to it).
Suppose that the functions ¢, are named such that R(T) C I; and that for ev-

ery T there exists a subsystem of (¢,) forming a Riesz basis in L, (0, T,CM).
Then

PROPOSITION. The statements below are equivalent
a) R(T) increases strictly as T — oo

"b) R(T) is not dense in | R(T) for every T >0 (the line denotes closure
>0
in ly).

The proof requires
LEMMA 5. R(T) is closed in I for every T > 0.

PROOF. Let f € Ly(0, T;CN) and suppose that
I
((fk #Pn)Lz)n ""2"(6)1))1-

Since a subsystem of (pp) is Riesz basis on (0, 7) hence the mapping f —
({(f.n;)), is an isomorphism of L,(0, T;CN) onto I,. Consequently (f;) is a

Cauchy-sequence in Ly hence 3 f € Ly : fi L, f. This implies {fy,pn) —
(fyon) hence {f,p,) =cy for every n. ]

LEMMA 6. If R(Ty)= R(Ty) for some T\ < T, then
R(T\)=R(t) forall T>T.
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PROOF. R{T7) = R(Ty) implies that for all functions f € L,, suppf
[Ty, T>}] there exists g € Lo, suppg C [0, T;] with the same moment sequence
{we use below the notations of |5])

L) Ty
/ei“”"kr (f@)ef Ydr = /eiwmkr (8(),eZ Vdr =
o

T 0

Tzﬂ+h Tl’+h

= / et [f (e — h),e,fn)dt = / e Wmit {glr — l:,),ef,fﬂ}rf;i
J
Ty +h h

In other words: any function on (T} +h,T, + h} can be substituted by an
appropriate function with suppost [h, T| +h) (in the sense that they produce
the same moment sequences). Let now suppf C [0, T} + 2(T> — T3)]. then
it can be substituted by some g, suppg; C [Tn — 11, T5] th = T, - Ty).
hence f can be substituted b +g; = g>. Then C
. yf 6,17] &1 ¥ 52 (7,,T,-T1,]
be substituted by some g3, suppgy C [0, 77], finally f can be substituted
by f +g1§ +g3. This shows that R(Ty + 2(15 — T1)) = R(1).
[Q’ Tl I . i [01 Tl] . N
Repeating this argument we see R(T| +k(T> — T1)) = R(T|) which implies
by the monotonicity of K(T) that

R(T)=R(T) for T>T. §

an

PROOF OF THE PROPOSITION.

a) = b) Indirectiy suppose the a) holds and b) coes not. Then for some
To, R(Ty) is dense in UR(T) i.e. by Lemma 5, R(Ty) = TL;‘OR(’T). But then
R(T) C R(Ty) for any value of T and hence R(T) = R(Ty) for T > Ty, in
contradiction with a).

b) = a) Suppose that R(T}) = R(T,) for some T < T3, i.e. that a) fails.
Then by Lemma 6, R(T)= R(Ty) for T> T} and hence |J R(T)=R(T). so

>0
b) can not fulfil.

Proposition is proved. B

1° REMARK 6. For the vibrating beam statement of Theorem 1 can not
hold for any T > . In this case the sysiem equation is —ii = u'® where
solution can be developed into a scries

Y

u(x,t) = Z (aueinzl +,3ue_""21) vu(x)
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where

3";4)’—'!14!),, V”(O): Vil(n)
vp(0) = vy () "’(0) - V,’1”(.7I,
v (0) = v,, ()

is a complete system in i,(0,m) : vy =cosnx. Then

Vn(xl)
Au()=) ( | due By Bemin’t \‘
Vn (xN)}

Such a sum can not be dense over any {0, T), because in that case \\ei”’ )
would be dense in Ly(0, T). But this is not true. For example we can use the

+in?e

famous stability theorem of Avdonin [10] which shows that e can be

completed for cvery T to a Riesz basis in L,(0,T) (consequently it is not
complete). On the other hand it would be reasonable to describe the subspace

.2
of L, spanned by <ei”‘ )
5° The result of JOO [8] holds also for r = - %,_ too. First we recall some

notations. Let £ be the unit circle, Py,..., Py € €&, SN4],.-.2SM € L2 and
consider the membrane

N
u,,:Au+Zé((.x,y)-pj)vj on (0,T)x
j—l

?——3— Z O(s — 8)vj on (0,T)xaQ
ar J=N+i

controiied by v; € La(0, 7). Denote
W, =D (1 -ar’?)
\
the domain of the 3-th power of / — A and let
Hr =W & Wr.

THEOREM. [8] For r < —% the movement state {u,u;) belongs to
C ([0, T\, ¥}, ) if the controls v; are in L(0, T).

Denote /,, the Besse! function of m-th order and let Af,m), n=1.2,... be
the positive zeros the derivative J),. We prove first
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LEMMA 1.
DIV s A
k<A™ <k a1

n<cm

where n* is the smallest natural number n (depending on m and on a constant
1
0<r<1)for whichm+4im3 <24 .r.
1 2
b) 3 m~3In"3=0(1).
n,m

k<A™ <kal
n<cm

PROOF OF b). Denote Ai the Airy function [2]. It is well-known that
13, mg > 1, my is an absolute constant. We know ([2], 345. p.)

/ls,'") a), 1
0)) ‘P( o >= CYE) +0(1) oy R

x 1/2
where a), is the n-th negative zero of Ai’, %[(p(x)] 3/2 = ( ) dt,
1 <x <oo. It is known ([3], 10.4.94.-10.4.105)

3 2/3 n2/3 3\ 2/3 1
2 a,'.=—{§n(4n—3)} +O( = ):—(——27-[—) 2/3+O( 1/3)

Obviously ¢ is strictly monotone increasing. If k S/ls,'") <k+1,thenk>m+1
if m > mg. Hence

/1(1'") >m+ Zm

[—

1 2
Z m 3In 3=
n,m
k<A™ <kl
n<cm
m2my
= > <c > <
nm n,m
k A k+1 k)< k+l
0 (E)S‘P(an‘) so(l)  o(k)s ~ o h-s<o (432)
n<cm n<cm
= mZmo
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<c Z <

n,m

—(31) ” 22//;“)(1) im 2/3<“’<l%l)

n<em

S
N
=
h
A

m2>mgy

<c > <
(£) 2l (&) <2 (1e0(4))< (&) m% (121)

n<cm
m2>mg

<c Z = A,

n,m
n.3p¥2 (&) somn< 2332 (41 ) +o)
n<cm
m2my

If this sum is nonempty then % 3/ 2( ) + O(1) < cm which implies
m -

93/2 (k) = O, that is, & = O(1). Hence k < om < m+cm3/3, from this
<

% —1<cm?/3, which gives £ ——7—2- <cp3/? ( ) Furthermore in A

m 2 3p(k+1 M2 (k) o0y =
— 3P ( >+O(l) —-30° () -om=

m

m 12
=0(1)+'—”-/ (1-—15) dt = 0Q1).
b4 t
I

1 1
<c —
Z m k_
m ¢\ m
ck<m<k-1 ck<m<k-1
m>my m2>m

<

>
AN
[}
3
|
[N
N
3
S
W
S
/N
3=
S’
N—”’
*
]



1 [k
< =— | —-1)}=0(Q).
=¢ Em: m (m ) o)

Hence

(e 18]

|
Z m- 3In" 3I=0(1).
n,m
k<A <kt

n<cm

- 1
Z \/m(n*n*+i—)sc n’zm

n,m

k<A™ <kt k<A™ <kl
mn>ny m2>nmyg
n*<n<em

n"<n<cem

13 .
m+%m1’33A::)-ri and n™ is minimal

<c E

n,m
23022 (&) +ozn< 2 372 (Ael)+ou)

n*<n<cm

mg/lf::)-ri and ™ 1s minimatl

IA

m2>nyg

).(m)
1 _n*
¢ (g)Sw( " )

m>mg

If this sum is nonempty then ;',% = O(1). Furthermore

m 2 312 k+1 m 2 3/2 k ..
ST el - =232 2} — o) = o).
~ 3% (m )+O() 14 (m) O(1)=0(1)

IA
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Yo=Y o+ > + Y = 5]+ 5+ 53.

n,m n,m n,m nom
Lok o k ik, k,cod kel ¢
S E TR w T R mtm  m mgﬁs m T m

!

Since ¢ is strictly monotone increasing therefore

m 2 k \ m 2 / l
L Lp3R +0(1) - ( . ¢3/2 +O(1)/) >¢>0.
T 3 m \1 3
Thus
= 1
Sl S C 2 - S
m " (m - 2p3/2 (-k-> —m-3p3/2 (“1' )
ck<m<k -1 \/ 3¥ " 3¢ ~r1)
Lok _ o
rpoemoom
mmg
i
pagye Femmmm S C Wl el
Zn: ng\/'};— —r; ENTJ \/E_w rim
ck<m<k-! cp<m<k-—1
1k ¢ c<k—r;m
,',' ~ m m
m>mg
<c Y. ! o(1)
<c —=—==
vk f
c<t<ck
Now we cstimate S5
1 i
S <c¢ — = — = 0(l
%ﬁ"‘ﬁ%é%s’%"'% rik—c<m<rik+c
Now estimate Ss.
Similarly as in the estimate of S, we obtain S5 = O(1). Hence
y 2 3
- 1
e = O(1).
,%;; vmn —n*+1)

k<A™ <k+1
* -
n <n<cm

nx+%tvzl/:3§l;":)~ri and »™ is minimal

Using the above iemma, we can show that Theorem 1 in [5] remains
true for r = —%, too, namely
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THEOREM 1'. Forr = ~% and for any control v € L*0, T:CN) (u,ur) €
€ C([O,T],-%_é)-

PROOF. As it was seen in the proof of the case r < — %, we have to verify
that

(2 R

[(Af,'"))z ~ mz] v 0

(Here we use the formula numbering of [5].) For the pairs m, k with M > m
(M fixed), the original proof applies. For the case m > M, n > cm (where ¢
is a large constant) we apply the following device: denote

(22) ek =T () ed Vdr | €1y

i
E(z)=/v,-(r)e_i2’dr
0
then

Bef=0| [ IR@P:
z—z|<1
and

t
|F@)%dz < C/|Vi('f)|2dr
{Imz{<1 0

2
see Young [4]. Hence from A{™ < (,1('")) —m? < n? and from

(23) = O( )
vn

we get

2
Z Z / Wy (1 — ‘t)v (‘E)d‘[ <c L Z / IF(Z)!de..
m>Mn>cm m>Mn>cm

Iz—ls,m)lgl
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=Y ¥ [ mPe lﬁlec/tlwlz-
]

no M<m<Z .
<m<% z—lgm)iﬁl Imz|<1

In case n < cm, m > M, r; =1 we have to estimate

t 2
P2 .
Z Zm"in'ii /e"‘wm*’vi(r)dz <
m>2Mn<cm 0
o 12
<e >, mIn73 / IF@)I*dz <
k=1 n,m
k<A™ <t IZ‘Agm)lsl
n<cm
ad 12
<cy / IF@Pdz- ) mTInTig
k=1 mz<i o
k~1<Rez<k+l k<A™ <k+1
n<cm

t

<c / |Fi(2)|%dz 5c/|v,-(r)|2dr
{Imz|<1 0

(we used Lemma 1 b) above). Similarly, if n <cm, m > M, r; < 1 then we

estimate as follows

2
! &

1 :
S Y mey [ e <

m>Mn<cm 0

y 1
<c E / F(z) 24z - E I
~ 1B e vmn —n*+1) ~
k=1 jlmz|<1 7
k<1<Rez<k+l k<A™ <4

n<cm

4
<c / IF@)Pfz<c / vi(@)2dr.
0

v
Imz|<1
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1
The estimate for the sum where A{™r; < m + 4m3, remains the same as for
r<-— % The proof is complete. |

THEOREM 2’. The system is not approximately controllable for r = —%
and for any T > 0.

The original proof works because (see p.249 in [5]) we used only that
T
rz'/eiwmk('_r)(v(t),e,:,’,‘,, vn)dr | €
0
in the coordinates m > M, n > cm. But this is proved above in Theorem 1°. |}

THEOREM 5°. Let r = —%, then

a) U R(HCH
T>0 —2

b) If e£#0Y m, n and ¢},,, e, are not parallel vectors, then
U rmy=%_,.
T>R 2

PROOF. We have to show (using the notations of the original proof) that
a) R(00)Cly, b) R(oo) =1y,
a) The system e~ M0k =1 ig Riesz basis in L,(0,00) in its closed linear

) r 1 . .
hull. From % =< n"™*2 =1 it follows that the factor of e "ok~ jg

1

< |le3, = o(1), hence the moment sequence is a nontrivial subspace of I,
R(00)Cly.
b) The original proof works. |
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1. Introduction

The Bessel polynomials constitute an important class of polynomials with
many applications [4], pp. 131-149. GROSSWALD [4], pp. 25-33 discussed
only the orthogonality of the Bessel polynomials on the unit circle and the
corresponding moments. EXTON gave the orthogonality property [3], p. 215,
(14):

[0 @]
(L1) / %32~V /xy (i, Vyn (s, Dz =
0

B (-)'nln+a-2
" T(a+n)2n+a - 1)sin(ma)

ém,n, RCa(l—m-—n.

SRIVASTAVA [6] noted that the orthogonality property of the Bessel poly-
nomials:
o0

(1.2) /x l—a,—xy (Lia,x)yn(l;a,x)dx =n'T(2 - a ~ n)m n
0
obtained by HAMZA [5] is incorrect.

The author [2], in view of the remark of SRIVASTAVA, using (1.1) derived
the following orthogonality property:
(1.3
iw }
2llfQ2~a—n)
(1-a-2n)

a

fx™%e ™y (10,3 )y (Lia,x)dx =

J
0

Omn, Rea<l-—m-—n.
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The Bessel polynomials are defined by the relation [4], p. 38, (1):
(1.4) Yn(xia,b) = Fy (—n,n+a—1;—;—%).
In view of the relation [1], p. 325, (5):
(1.5) 2Fy(=nsa;—x)=(a)(-1)"'x" | F (—n;l —-a —n;—l)

X
the Bessel polynomials can be expressed as:

n b
(1.6) yp(x:a,b)=(a+n— 1), (i) 1 Fy <——n;2—a—2n;—),
b X

b\" X
A7) yba,x)=(@+n— 1), (;) \F <—n;2 —a-— 2,1;-5>.

In view of the interest shown in the Bessel polynomials [4], it appears
worthwhile to investigate further, the matter of the orthogonality of the Bessel
polynomials and the functions related to them.

In this paper, we establish an orthogonal type relation for the Bessel poly-

nomials over the interval (0,00) with respect to multiplier function
xm—n—a+2,—x/b

The following identity which follows from (1.4) may be found useful in
the study of the Bessel polynomials:

(1.8) yn(x;a,b) =yn(1/b;a,1/x).

2. Orthogonal type relation

The orthogonal type relation to be established is

o0
/x"'—"—“+2e—"/by,,,(b;a,x)y,, (b;a,x)dx =
0
2.1) =0, if m<n-1
(2.2) =b>" T2 ~a—-n), if m=n~—1
(2.3) =b3"%n12-a)T2-a—n), if m=n
(2.4) =36+ D2 -a)[R~a—n), if m=n+1
(—D'@a+n+k—Dypla+n—-1),TG—a - 2n)
- b4 k3T Q2 - n)2—a - 2n),
2.5) % 3F) -k,2,3—a~-2n;1

2 a-—-2n-2k,2—n
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ifm=n+k (k=-1,0,1,2,...) where 2n +Rea < 3.
PROOF. In view of (1.7), the integral (2.1) can be written as

2.6) (@a+m—Dyla+n—1), (b)m+"-

o0
e — —m; ¥ —n; ¥
'/xz e X/blFl [Z—a —gm} 1 [Z—a —7;211] dx
0

We next express the hypergeometric functions as infinite series 1], p.322,
(10.1), interchange the order of integration and summation, which, inciden-
tally is justified due to absolute convergence of the integral and summations
involved, and write (2.6) as

Q2.7 (@a+m—Dpmla+n—1),b"*".
m —r n —u oc
Z (=m)rb Z (=n)ub /xz—a~2n+r+ue—x/bdx
2—a-2m)r! 2-a-2n),u! '
r=0 u=0 0

Now, the integral in (2.7) can be evaluated with the help of the definition of
the gamma function:

o0
/x"e_x/bdx =T(n+1)b"*!, Ren > -1.
0

Thus (2.7) is equivalent to

(a+m-—1Dya+n—

1) m+i
pa+2n—3 b )

(2.8)

m n

Z (—m), Z (=n),I'@G—-a-2n+r+u)
(2—a—2m)rr!u= Q2—-a-2n)u' )

r=0
On simplifying, (2.8) reduces to

0

(a+m—-1)pu@+n—1), pmn
i .
pa+2n-3

2.9)

m

Z(—m,)rf(3—a—2n+r) E [—n,3——a—2n+r;1]
’ 247 .

Q2-a-2m)r! 2—a-2n
r=0

Applying Vandermonde’s theorem
(c = b)n

Fi(-=n;b;c;1) = )
2F1( ) o

n=0,1,2, ...
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the relation (2.9) reduces to the form:
(2.10)

@+m-—Dpa+n- 1), e Em: (=m)(~r—=DpI'G-a—-2n+r)
pa+2n=3 e Q-a-2m)y(2—-a-2n),r!

If r <n — 1, the numerator of (2.10) vanishes, and since r runs from 0 to
m, it follows that (2.10) also vanishes, when m < n — 1. Now, it is clear that
for m <n —1 all terms of (2.10) vanish, which proves (2.1).

When m = n — 1, using the standard result (—n), = (~1)"n!, and

l"(l—a—n)=t—lm°—9wehave

(a)n
o0
(2.11) /x1‘“e’*/"y,,~l(b;a,x)y,,(b;a,x)dx =b* "IN (2 —a —n),
0

which proves (2.2).

For m =n, we employ the standard results like (~n),_; =(— 1)"~!n! and
(—n = 1)p =(-1D"(n+1)! and add the resulting two terms (r =n — 1, n), with

the help of T(1 ~-~a —n) = Q'—l%%zﬂ to obtain

o0
(2.12) /xz—“e**/” {yn(bia,x)}*dx =b> 012 ~ a)T 2 - a - n),
0
which proves the relation (2.3).
For m =n + 1, we use the standard result {1], p. 274, (8.3):

—1)"k!
, 0<n<k
(—k)n={(—"- ==
0, n>k.

and add the resulting three terms (r =n — 1, n, n + 1), then simplify to obtain
(2.13)
o0

/x3*“e—x/”y,,+,(b;a,x)y,, (b;a,x)dx =3b*%@a - 2)(n+ 1)'TQ2 — a — n),
0
which proves (2.4).

NOTE. The formulae for m =n +2, n+3, n+4, ..., can be obtained as
above.

Since, we see that there is no symmetry in (2.11), (2.12) and (2.13),
therefore it is not possible to find a general formula in a compact form.
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However on setting m =n+k (k=-1, 0, 1, 2, ...) in (2.10), we obtain
the general formula in following form:
) o0
(2.14) / xk=a¥2e=x/ay, | (bsa,x)yn(bsa,x)dx =
0
_ (D'a+n+k -1, ua+n-1),TB3—-a~-2n)
- b3—k—=3T(2 - n)2 - 2a - 2n),

“+F -n—k,2,3~a—-2n;1
¥\ 2—a-2m-2k2-n|"
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ON UNIFORM CONVERGENCE OF POLYNOMIALS
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In [1] it is shown by L. CzACH that exponential convergence of a se-
quence of polynomials in L? implies uniform convergence. In this paper this
result is generalized with a weaker condition on the speed of convergence in
LP spaces (p > 1). A possible benefit in applications is transition to uniform
convergence when a Banach space method yields an approximating sequence
of polynomials converging in L.

First a theorem with a general convergence assumption is proved, then
corollaries are given for power order and exponential convergence. Finally
some consequences are proved concerning the smoothness of the limit func-
tion and the convergence of the derivatives.

THEOREM 1. Let § C RN be a closed ball around the origin,
(pn) RN 5 R a sequence of polynomials with gr(p,) = n, p > 1 and
f € LP(S). Further, let (¢,) C R such that e, — 0 decreasingly.

If \If —pallipsy < & for all n € N = {1,2,...,} then the following
inequalities hold:

o0
() if Yn*Ne, <oo andny, =Y j*Me; then 3 ky > 0 such that
j=n

“f—Pn”C(S) <kynn (n €N);

oC
(2) ity nNsl <oo and y, = Z j st then for every closed set F C int.S
Jj=n
3 ky > 0 such that
“f _Pn“C(F) < kot (n €N).

* This research was supported by the Hungarian National Foundation for Scientific Re-
search under grant No. T 4385.
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Before the proof of Theorem 1 we prove an analogous assertion for p=1
and with an interval instead of S.

N
PROPOSITION. Let I denote >< [a1,b1] CRN and let (py), f and e, be as

in the theorem. If |if — p, || L < < £y (n € N) then the following inequalities
hold:

i) if Zn2N €y <00 andn, is as in the theorem then 3 k; > 0 such that
Wf —pallccy Skimn (n € N);

(it) if EnN €] < oo and u, is as in the theorem then for every closed set
F Cintl 3 ky >0 such that

i "PnHC(F) < kapin (n € N).

PROOF. Let qn =pp —p,—1 (n =2, 3, ...). The assumption
“f — Pn ”Ll(l) <eg; (neN) implies

(3) ”q"HLl(I) Sen+ey_1 <28, n=23,...).
Xpxy XN
Let Qu(xp,x2,..,xN) = [ [ ... [ qu ((x1,X7,...,xN) € I). It is clear
aja; apn
that
@ 0102...0NCOn =qn and
&) 1@nllccry < llanll sy

Thus, considering (3), we have
(6) HQnllcuy < 26,-1-

First we prove (i). The iterated applications of Markov’s inequality (i.e.
for any polynomial P on [ with grP=n and 1 =1,2,...,N |[8;P||cy <
< Kn2||PHC(1) K, depending on I only; see [3]) lead to
10102...dNQullcny <

,
N g
, 2
< KN [H(n-i—k)} Qe < KN [nN(N+1)!] Qe
k=0
ie.
19192...0n Qullcry < Kin* M Qallcqy
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(K, = KN ((N + 1)!2), which, by (4) and (6) and with M := 2K, means

() lgnlicry < Mn*Ne, .

The assumption on &, implies that 3 ||gn|| (s < 00, thus }_ g, converges
uniformly, which just means that (p,) converges uniformly and clearly the
limits is f itself.

Finally,

o0 (e e]
N
If =pallcy < Y llgillcay M Y j*Neioy <

J=n+l Jj=n+l
o0
. 2
<k Y G =DNe_ =k,
J=n+l

thus (i) is proved. (k; can be chosen 22N M)

The proof of (ii) is similar, using Markov’s second inequality (i.e. for
any closed set F C intI 3 L > 0, depending on F and I, such that for any
polynomial P on I with grP=n and [ = 1,2,...,N ||9; Pllc(F) < La||Plicery
holds; see [3]). Thus, with M’ :=2L; (where L, := LN(N + 1Y, we have

" anllcor < M'nNe, |,
which leads to

o0 o0
W =pallecn <M Y G=DNg1 <k D g1 =kouy

j=n+l j=n+l

(ko can be chosen 2V M’ ). Hence (ii) is also proved. ]

PROOF OF THE THEOREM is node is three steps.

(a) Let [ := [—a,a]N (@ >0) and let T : RN 5 R denote rotation
by ¢ = (91,02, ¢N_1) € [O,%)N_l. Then the proposition proved above
holds also on Ty, (1) with the same constants k; and k,.

This is straightforward if we apply the proposition to the sequence
(pn © Tp) which also consists of polynomials of degree n and in (ii) to the
set Ty l(F).

(b) Now the proof on § follows briefly for p = 1: denoting by r the radius

N
of S and by [/ the cube [”jﬁ?r':ﬁ’} (the straight cube with vertices on

the sphere), in case (1) for any x € S we can find ¢ € [0,%)N"l such that
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x € Iy :=Ty(I). Hence |f (x) - pp(x)| < |If —Pnllcip) < k17n, Where the latter
inequality follows from ||f — p, ”L‘(Lp) <|f - P"HLI(S) < &, and part (i) of
the proposition. Since x € S was arbitrary. we have |[f ~ pnllc(s) < kim.

To prove (2), we use the fact that in Markov’s second inequality the
exact value of the constant L = L{F,]) is aist_(lFTa“IS' In the proposition we

have ky = 2N+1 LN(N +1)1. Now for any x € F we can find ¢ € [O,’%)N~l

such that x € I, = Tp() and dist(x,d1) 2> o := WS Then F :=

= Fﬂ?(x,%) is a closed subset of int! with dist(F;,d1) > % Thus for
any x € F, part (i1) of the proposition is valid for F, and I, with k3 :=
= 22N +1Q_N (N +1)!, a constant independent of x. Now we can proceed as
above: |f (x) = pn ()| <|If — Pullc(g) < kot where the latter inequality fol-
lows from ||f — p, ||L1(I¢) <\f = pn ”L‘(S) < ¢, and part (ii) of the proposition
with &, given above. Since x € F was arbitrary, we have ||f — pn |l c(Fy < kottn-

(c) For p > 1 the proof follows from the case with p =1 and the fact that
for any p > 1 we have LP(S)C LI(S) and ||gHL;(S) < const - ||g|| p(s) for any
g € LP(S). |

In two of the most important cases, namely, for ¢, := ;Cy (c>0,vy>1)
and £, =cq" (¢ >0, 0 < g < 1) the application of Theorem 1 can be coripleted
by a simpler estimate for #, and yu, as follows:

COROLLARY 1. Let S C R¥ be the unit ball, (p,) : RY - R a sequence
of polynomiais with gt(py)=n, p > 1 and f € LP(S). Assume that 3¢ >0
andy > | such that ||f — py||[p(sy < 7 for all n € N. Then the following
inequalities hold:

a) ify >kn :=2N+1 then 3 K| >0 such that

8) f = pnlices) < (n € N);

1
n?—kn

b) ify >mp :=N+1 and F is a closed subset of intS then 3 K, > 0 such
that

. K
9 W =pullcr < v (n €N).

PROOF follows from the theorem by an elementary calculation:
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o0 (e )
Foranyf>landn €N, ) 171; < n—g-lﬂ_l holds (with Mﬁ = Z;,l?):
j=n j=1

00 1 1 00 n oo n—1 1 oc n
Z;ﬁ=rﬁg<lz+j) nﬁzz(]n+k) 7;?

j=n Jj= j=1 k=0

Hence

a)

00
1 CMY—ZN o .
Mn - —]-Z": CZ’;‘])/ 2N — n)’—-2N-l - ny...kN (Cl = CMY—2N)

ify >kn; K| :=ciky;

b)
1 CMY"N c2

Hn = Z-’ £j —CZ])’ N = py—N-1 = TmN (¢ ’_CM)’—N)
j=n
ify > my; Ko :=coky. .

COROLLARY 2. Let S C RN be the unit ball, (p,) : RV — R a sequence
of polynomials with gr(py)=n, p > 1 and f € LP(S). Assume that 3 ¢ >0
and 0 < q < 1 such that ||f — pn||1p(s) < cq™ for alln € N.

Then 3 ¢y >0 and q < q; <1 such that
(10) If —pullcsy <crgf (€N,

PROOF. We can find r > 1 and g < ¢; < 1 such that n2Ng" < rqy (n €N).
Hence 7, Z]zNE =c Z]quJ <chqJl 1———ql, which yields the

Jj=n Jj=n

k
desired estimate with ¢y := ]—1%

REMARKS. 1. Obviously, we obtain a constant smaller than c; if we only
need estimate (10) in the case n > ng for some ng € N.

2. We have more rapid convergence in this case as well if we consider a
closed subset F of intS; the same proof as above leads to ||f — pallc(p) < 295
(n € N) where ¢, < gy since now nVg" < rqy (n € N) is required.

Finally we discuss the facts that the proof of Theorem 1 yields about the
smoothness of f and the convergence of the derivatives of (p,).
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THEOREM 2. Under the assumptions of Theorem 1, let m € N be such
o0
that " nN*Me, < 0o and let T\ ;= Y jN*ke; for each k =1,2,...,m.
j=k
Then f € C™(intS) and for any k = 1,2,...,m and for each closed set
FCintS 3 dg >0 such that

k
I - p e <at) (e

o0

If Zn2N+2"'£,, <o, k=1,2,....m zmdt?,gk) = Zj2N+2k£j then 3 ry >0
j=n

such that

k k .
O = p® sy < (e

PROOF. We only prove the theorem for an interval I instead of a ball and
for p = 1. Then the rest can be done just as in Theorem 1.

Let F be a closed subset of intI. We can find closed intervals I (k =
0,1,...,m—1)such thatintl D Iy, int Iy D Iy, ..., int Ly, _9 D I, _j,intl, ;D
F,and for all k=1,...,m — 1 dist (L, L) =dist (I, Ip) = dist (1,1, F).

Part (ii) of the proposition after Theorem 1 can be applied with I in
the role of the closed subset of intl. In (7) during the proof we obtain the
estimate {|gnljcy) < M 'nNe,_, (n € N) implying the uniform convergence
of 3" gqn on Iy, i.e. that p, — f uniformly on f,. Then by Markov’s inequality
applied to I; as a closed subset of int Iy we have

lgnllcay) :=max{”alqn“C(Il) : 1=1,2,---,n} < LM'nN¥e, ).

Thus 3 |lgyllcqry < oo, hence 3 g, converges uniformly on 1), ie. (p))
converges uniformly on I;. This implies that f € C1(1}) and f' =limp/,.

If m > 1 then we can repeat this argument for f' on I as a closed subset of
int/;. Owing to Markov we now have ||g, || c() < L2M'nN*2¢, | (n € N),
which finally yields that f € C%(h) and f” = limp!. This can be continued
by induction as long as 3" nN*g, < 0o, i.e. at least up to m. Eventually we
obtain that f € C™(F). Since this holds for any closed F C intl, we have
f e C™@ntl).

The estimate for the convergence of the derivatives is now proved simi-
larly to that in the proposition, using the estimate

g™l cep < LM nM*ne,
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received by the above induction:

F™ — p N ey < Zuq“'”uc L"'M'LJN*'" 1<

Jj=n+l Jj=n+l

" N
< LmM Z (] +m ]._l =len

Jj=n+l

(with M" .= M2N*™ gy = 1" M").
For the second estimate we start from (7) and apply Markov’s first in-
equality on I m times to receive the estimate

HQI(IM)HC(I) < KmMn2N+2m£n

With this the proof is the same as above. [ ]

We may apply this theorem as well for g, := fy (c>0.y>1)yand e, :=cq"™
(c >0, 0< g < 1) using the estimates in Corollaries 1 and 2.

COROLLARY 3. Let S C RN be the unit ball, (p,) : RN — R a sequence
of polynomials with gr(pp)=n, p > 1 and f € LP(S). Assume that 4 ¢ > 0,
I € NandO<a <1 such that |[f —pnllips) < ,;TCH for all n € N.

Then f € C'=N=V(nt§) and for any k = 1,2,...,1 = N +1 and for each
closed set F C intS 3 a; > 0 such that

I a
(ky (k) L a )
1Lf IIC(F) nl+a—(N+k+1) (n € N).

Fork=1,2,..., ILL:YLJ — N we have b, > 0 such that

b
(k) k) ____*k___ .
!V pll “C(S) n[+a (2N+2k+1) (ll EN).
REMARK. The result on the differentiability of f is analogous to the
classical inverse theorems of Bernstein (]2]) concluding the smoothness of
S from the speed of uniform approximation by polynomials.

COROLLARY 4. Let S C RN be the unit ball, (pn) : RY>SRa sequence
of polynomials with gt (p,)=n, p > 1 and f € [/(S). Assume that3 ¢ >0 and
0 < g <1 such that \|f — pn||1rs) < cq™ for alln € N. Then f € C®(intS)
and for any k € Nd ¢, >0 and 0 < q, < 1 such that

k
Hf(k) pr(z )

<cgp  (n€N)

'C(S)



298 1. KARATSON

REMARK 1. Applying Corollary 2 and Bernstein’s theorem on exponen-
tial approximation by polynomials, we obtain the analiticity of f.

REMARK 2. The assertion of this paper admit natural generalizations, this
follows directly from the way they are proved.

I. Instead of S we may consider any domain that can be represented as
the union of balls or cubes with diameter bounded from below, e.g. a convex
domain having a smooth boundary with bounded curvature.

2. The assumption grp, =n can be omitted for 3 (grp, )2N £, < 00 and
S (grpn)Ne, < oo, respectively.
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